Metamath Proof Explorer


Theorem mppsval

Description: Definition of a provable pre-statement, essentially just a reorganization of the arguments of df-mcls . (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mppsval.p P = mPreSt T
mppsval.j J = mPPSt T
mppsval.c C = mCls T
Assertion mppsval J = d h a | d h a P a d C h

Proof

Step Hyp Ref Expression
1 mppsval.p P = mPreSt T
2 mppsval.j J = mPPSt T
3 mppsval.c C = mCls T
4 fveq2 t = T mPreSt t = mPreSt T
5 4 1 eqtr4di t = T mPreSt t = P
6 5 eleq2d t = T d h a mPreSt t d h a P
7 fveq2 t = T mCls t = mCls T
8 7 3 eqtr4di t = T mCls t = C
9 8 oveqd t = T d mCls t h = d C h
10 9 eleq2d t = T a d mCls t h a d C h
11 6 10 anbi12d t = T d h a mPreSt t a d mCls t h d h a P a d C h
12 11 oprabbidv t = T d h a | d h a mPreSt t a d mCls t h = d h a | d h a P a d C h
13 df-mpps mPPSt = t V d h a | d h a mPreSt t a d mCls t h
14 1 fvexi P V
15 1 2 3 mppspstlem d h a | d h a P a d C h P
16 14 15 ssexi d h a | d h a P a d C h V
17 12 13 16 fvmpt T V mPPSt T = d h a | d h a P a d C h
18 fvprc ¬ T V mPPSt T =
19 df-oprab d h a | d h a P a d C h = x | d h a x = d h a d h a P a d C h
20 abn0 x | d h a x = d h a d h a P a d C h x d h a x = d h a d h a P a d C h
21 elfvex d h a mPreSt T T V
22 21 1 eleq2s d h a P T V
23 22 ad2antrl x = d h a d h a P a d C h T V
24 23 exlimivv h a x = d h a d h a P a d C h T V
25 24 exlimivv x d h a x = d h a d h a P a d C h T V
26 20 25 sylbi x | d h a x = d h a d h a P a d C h T V
27 26 necon1bi ¬ T V x | d h a x = d h a d h a P a d C h =
28 19 27 syl5eq ¬ T V d h a | d h a P a d C h =
29 18 28 eqtr4d ¬ T V mPPSt T = d h a | d h a P a d C h
30 17 29 pm2.61i mPPSt T = d h a | d h a P a d C h
31 2 30 eqtri J = d h a | d h a P a d C h