Metamath Proof Explorer


Definition df-mcls

Description: Define the closure of a set of statements relative to a set of disjointness constraints. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mcls mCls=tVd𝒫mDVt,h𝒫mExtc|hranmVHtcmopmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspc

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmcls classmCls
1 vt setvart
2 cvv classV
3 vd setvard
4 cmdv classmDV
5 1 cv setvart
6 5 4 cfv classmDVt
7 6 cpw class𝒫mDVt
8 vh setvarh
9 cmex classmEx
10 5 9 cfv classmExt
11 10 cpw class𝒫mExt
12 vc setvarc
13 8 cv setvarh
14 cmvh classmVH
15 5 14 cfv classmVHt
16 15 crn classranmVHt
17 13 16 cun classhranmVHt
18 12 cv setvarc
19 17 18 wss wffhranmVHtc
20 vm setvarm
21 vo setvaro
22 vp setvarp
23 20 cv setvarm
24 21 cv setvaro
25 22 cv setvarp
26 23 24 25 cotp classmop
27 cmax classmAx
28 5 27 cfv classmAxt
29 26 28 wcel wffmopmAxt
30 vs setvars
31 cmsub classmSubst
32 5 31 cfv classmSubstt
33 32 crn classranmSubstt
34 30 cv setvars
35 24 16 cun classoranmVHt
36 34 35 cima classsoranmVHt
37 36 18 wss wffsoranmVHtc
38 vx setvarx
39 vy setvary
40 38 cv setvarx
41 39 cv setvary
42 40 41 23 wbr wffxmy
43 cmvrs classmVars
44 5 43 cfv classmVarst
45 40 15 cfv classmVHtx
46 45 34 cfv classsmVHtx
47 46 44 cfv classmVarstsmVHtx
48 41 15 cfv classmVHty
49 48 34 cfv classsmVHty
50 49 44 cfv classmVarstsmVHty
51 47 50 cxp classmVarstsmVHtx×mVarstsmVHty
52 3 cv setvard
53 51 52 wss wffmVarstsmVHtx×mVarstsmVHtyd
54 42 53 wi wffxmymVarstsmVHtx×mVarstsmVHtyd
55 54 39 wal wffyxmymVarstsmVHtx×mVarstsmVHtyd
56 55 38 wal wffxyxmymVarstsmVHtx×mVarstsmVHtyd
57 37 56 wa wffsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtyd
58 25 34 cfv classsp
59 58 18 wcel wffspc
60 57 59 wi wffsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspc
61 60 30 33 wral wffsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspc
62 29 61 wi wffmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspc
63 62 22 wal wffpmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspc
64 63 21 wal wffopmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspc
65 64 20 wal wffmopmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspc
66 19 65 wa wffhranmVHtcmopmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspc
67 66 12 cab classc|hranmVHtcmopmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspc
68 67 cint classc|hranmVHtcmopmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspc
69 3 8 7 11 68 cmpo classd𝒫mDVt,h𝒫mExtc|hranmVHtcmopmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspc
70 1 2 69 cmpt classtVd𝒫mDVt,h𝒫mExtc|hranmVHtcmopmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspc
71 0 70 wceq wffmCls=tVd𝒫mDVt,h𝒫mExtc|hranmVHtcmopmopmAxtsranmSubsttsoranmVHtcxyxmymVarstsmVHtx×mVarstsmVHtydspc