Metamath Proof Explorer


Theorem mppspstlem

Description: Lemma for mppspst . (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mppsval.p P=mPreStT
mppsval.j J=mPPStT
mppsval.c C=mClsT
Assertion mppspstlem dha|dhaPadChP

Proof

Step Hyp Ref Expression
1 mppsval.p P=mPreStT
2 mppsval.j J=mPPStT
3 mppsval.c C=mClsT
4 df-oprab dha|dhaPadCh=x|dhax=dhadhaPadCh
5 df-ot dha=dha
6 5 eqeq2i x=dhax=dha
7 6 biimpri x=dhax=dha
8 7 eleq1d x=dhaxPdhaP
9 8 biimpar x=dhadhaPxP
10 9 adantrr x=dhadhaPadChxP
11 10 exlimiv ax=dhadhaPadChxP
12 11 exlimivv dhax=dhadhaPadChxP
13 12 abssi x|dhax=dhadhaPadChP
14 4 13 eqsstri dha|dhaPadChP