Metamath Proof Explorer


Theorem mppspstlem

Description: Lemma for mppspst . (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mppsval.p
|- P = ( mPreSt ` T )
mppsval.j
|- J = ( mPPSt ` T )
mppsval.c
|- C = ( mCls ` T )
Assertion mppspstlem
|- { <. <. d , h >. , a >. | ( <. d , h , a >. e. P /\ a e. ( d C h ) ) } C_ P

Proof

Step Hyp Ref Expression
1 mppsval.p
 |-  P = ( mPreSt ` T )
2 mppsval.j
 |-  J = ( mPPSt ` T )
3 mppsval.c
 |-  C = ( mCls ` T )
4 df-oprab
 |-  { <. <. d , h >. , a >. | ( <. d , h , a >. e. P /\ a e. ( d C h ) ) } = { x | E. d E. h E. a ( x = <. <. d , h >. , a >. /\ ( <. d , h , a >. e. P /\ a e. ( d C h ) ) ) }
5 df-ot
 |-  <. d , h , a >. = <. <. d , h >. , a >.
6 5 eqeq2i
 |-  ( x = <. d , h , a >. <-> x = <. <. d , h >. , a >. )
7 6 biimpri
 |-  ( x = <. <. d , h >. , a >. -> x = <. d , h , a >. )
8 7 eleq1d
 |-  ( x = <. <. d , h >. , a >. -> ( x e. P <-> <. d , h , a >. e. P ) )
9 8 biimpar
 |-  ( ( x = <. <. d , h >. , a >. /\ <. d , h , a >. e. P ) -> x e. P )
10 9 adantrr
 |-  ( ( x = <. <. d , h >. , a >. /\ ( <. d , h , a >. e. P /\ a e. ( d C h ) ) ) -> x e. P )
11 10 exlimiv
 |-  ( E. a ( x = <. <. d , h >. , a >. /\ ( <. d , h , a >. e. P /\ a e. ( d C h ) ) ) -> x e. P )
12 11 exlimivv
 |-  ( E. d E. h E. a ( x = <. <. d , h >. , a >. /\ ( <. d , h , a >. e. P /\ a e. ( d C h ) ) ) -> x e. P )
13 12 abssi
 |-  { x | E. d E. h E. a ( x = <. <. d , h >. , a >. /\ ( <. d , h , a >. e. P /\ a e. ( d C h ) ) ) } C_ P
14 4 13 eqsstri
 |-  { <. <. d , h >. , a >. | ( <. d , h , a >. e. P /\ a e. ( d C h ) ) } C_ P