| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mppsval.p |
|- P = ( mPreSt ` T ) |
| 2 |
|
mppsval.j |
|- J = ( mPPSt ` T ) |
| 3 |
|
mppsval.c |
|- C = ( mCls ` T ) |
| 4 |
|
df-oprab |
|- { <. <. d , h >. , a >. | ( <. d , h , a >. e. P /\ a e. ( d C h ) ) } = { x | E. d E. h E. a ( x = <. <. d , h >. , a >. /\ ( <. d , h , a >. e. P /\ a e. ( d C h ) ) ) } |
| 5 |
|
df-ot |
|- <. d , h , a >. = <. <. d , h >. , a >. |
| 6 |
5
|
eqeq2i |
|- ( x = <. d , h , a >. <-> x = <. <. d , h >. , a >. ) |
| 7 |
6
|
biimpri |
|- ( x = <. <. d , h >. , a >. -> x = <. d , h , a >. ) |
| 8 |
7
|
eleq1d |
|- ( x = <. <. d , h >. , a >. -> ( x e. P <-> <. d , h , a >. e. P ) ) |
| 9 |
8
|
biimpar |
|- ( ( x = <. <. d , h >. , a >. /\ <. d , h , a >. e. P ) -> x e. P ) |
| 10 |
9
|
adantrr |
|- ( ( x = <. <. d , h >. , a >. /\ ( <. d , h , a >. e. P /\ a e. ( d C h ) ) ) -> x e. P ) |
| 11 |
10
|
exlimiv |
|- ( E. a ( x = <. <. d , h >. , a >. /\ ( <. d , h , a >. e. P /\ a e. ( d C h ) ) ) -> x e. P ) |
| 12 |
11
|
exlimivv |
|- ( E. d E. h E. a ( x = <. <. d , h >. , a >. /\ ( <. d , h , a >. e. P /\ a e. ( d C h ) ) ) -> x e. P ) |
| 13 |
12
|
abssi |
|- { x | E. d E. h E. a ( x = <. <. d , h >. , a >. /\ ( <. d , h , a >. e. P /\ a e. ( d C h ) ) ) } C_ P |
| 14 |
4 13
|
eqsstri |
|- { <. <. d , h >. , a >. | ( <. d , h , a >. e. P /\ a e. ( d C h ) ) } C_ P |