Step |
Hyp |
Ref |
Expression |
1 |
|
mppsval.p |
⊢ 𝑃 = ( mPreSt ‘ 𝑇 ) |
2 |
|
mppsval.j |
⊢ 𝐽 = ( mPPSt ‘ 𝑇 ) |
3 |
|
mppsval.c |
⊢ 𝐶 = ( mCls ‘ 𝑇 ) |
4 |
|
df-oprab |
⊢ { 〈 〈 𝑑 , ℎ 〉 , 𝑎 〉 ∣ ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ 𝑃 ∧ 𝑎 ∈ ( 𝑑 𝐶 ℎ ) ) } = { 𝑥 ∣ ∃ 𝑑 ∃ ℎ ∃ 𝑎 ( 𝑥 = 〈 〈 𝑑 , ℎ 〉 , 𝑎 〉 ∧ ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ 𝑃 ∧ 𝑎 ∈ ( 𝑑 𝐶 ℎ ) ) ) } |
5 |
|
df-ot |
⊢ 〈 𝑑 , ℎ , 𝑎 〉 = 〈 〈 𝑑 , ℎ 〉 , 𝑎 〉 |
6 |
5
|
eqeq2i |
⊢ ( 𝑥 = 〈 𝑑 , ℎ , 𝑎 〉 ↔ 𝑥 = 〈 〈 𝑑 , ℎ 〉 , 𝑎 〉 ) |
7 |
6
|
biimpri |
⊢ ( 𝑥 = 〈 〈 𝑑 , ℎ 〉 , 𝑎 〉 → 𝑥 = 〈 𝑑 , ℎ , 𝑎 〉 ) |
8 |
7
|
eleq1d |
⊢ ( 𝑥 = 〈 〈 𝑑 , ℎ 〉 , 𝑎 〉 → ( 𝑥 ∈ 𝑃 ↔ 〈 𝑑 , ℎ , 𝑎 〉 ∈ 𝑃 ) ) |
9 |
8
|
biimpar |
⊢ ( ( 𝑥 = 〈 〈 𝑑 , ℎ 〉 , 𝑎 〉 ∧ 〈 𝑑 , ℎ , 𝑎 〉 ∈ 𝑃 ) → 𝑥 ∈ 𝑃 ) |
10 |
9
|
adantrr |
⊢ ( ( 𝑥 = 〈 〈 𝑑 , ℎ 〉 , 𝑎 〉 ∧ ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ 𝑃 ∧ 𝑎 ∈ ( 𝑑 𝐶 ℎ ) ) ) → 𝑥 ∈ 𝑃 ) |
11 |
10
|
exlimiv |
⊢ ( ∃ 𝑎 ( 𝑥 = 〈 〈 𝑑 , ℎ 〉 , 𝑎 〉 ∧ ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ 𝑃 ∧ 𝑎 ∈ ( 𝑑 𝐶 ℎ ) ) ) → 𝑥 ∈ 𝑃 ) |
12 |
11
|
exlimivv |
⊢ ( ∃ 𝑑 ∃ ℎ ∃ 𝑎 ( 𝑥 = 〈 〈 𝑑 , ℎ 〉 , 𝑎 〉 ∧ ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ 𝑃 ∧ 𝑎 ∈ ( 𝑑 𝐶 ℎ ) ) ) → 𝑥 ∈ 𝑃 ) |
13 |
12
|
abssi |
⊢ { 𝑥 ∣ ∃ 𝑑 ∃ ℎ ∃ 𝑎 ( 𝑥 = 〈 〈 𝑑 , ℎ 〉 , 𝑎 〉 ∧ ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ 𝑃 ∧ 𝑎 ∈ ( 𝑑 𝐶 ℎ ) ) ) } ⊆ 𝑃 |
14 |
4 13
|
eqsstri |
⊢ { 〈 〈 𝑑 , ℎ 〉 , 𝑎 〉 ∣ ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ 𝑃 ∧ 𝑎 ∈ ( 𝑑 𝐶 ℎ ) ) } ⊆ 𝑃 |