Metamath Proof Explorer


Theorem mppspstlem

Description: Lemma for mppspst . (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mppsval.p 𝑃 = ( mPreSt ‘ 𝑇 )
mppsval.j 𝐽 = ( mPPSt ‘ 𝑇 )
mppsval.c 𝐶 = ( mCls ‘ 𝑇 )
Assertion mppspstlem { ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∣ ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ 𝑃𝑎 ∈ ( 𝑑 𝐶 ) ) } ⊆ 𝑃

Proof

Step Hyp Ref Expression
1 mppsval.p 𝑃 = ( mPreSt ‘ 𝑇 )
2 mppsval.j 𝐽 = ( mPPSt ‘ 𝑇 )
3 mppsval.c 𝐶 = ( mCls ‘ 𝑇 )
4 df-oprab { ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∣ ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ 𝑃𝑎 ∈ ( 𝑑 𝐶 ) ) } = { 𝑥 ∣ ∃ 𝑑𝑎 ( 𝑥 = ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∧ ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ 𝑃𝑎 ∈ ( 𝑑 𝐶 ) ) ) }
5 df-ot 𝑑 , , 𝑎 ⟩ = ⟨ ⟨ 𝑑 , ⟩ , 𝑎
6 5 eqeq2i ( 𝑥 = ⟨ 𝑑 , , 𝑎 ⟩ ↔ 𝑥 = ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ )
7 6 biimpri ( 𝑥 = ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ → 𝑥 = ⟨ 𝑑 , , 𝑎 ⟩ )
8 7 eleq1d ( 𝑥 = ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ → ( 𝑥𝑃 ↔ ⟨ 𝑑 , , 𝑎 ⟩ ∈ 𝑃 ) )
9 8 biimpar ( ( 𝑥 = ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∧ ⟨ 𝑑 , , 𝑎 ⟩ ∈ 𝑃 ) → 𝑥𝑃 )
10 9 adantrr ( ( 𝑥 = ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∧ ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ 𝑃𝑎 ∈ ( 𝑑 𝐶 ) ) ) → 𝑥𝑃 )
11 10 exlimiv ( ∃ 𝑎 ( 𝑥 = ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∧ ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ 𝑃𝑎 ∈ ( 𝑑 𝐶 ) ) ) → 𝑥𝑃 )
12 11 exlimivv ( ∃ 𝑑𝑎 ( 𝑥 = ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∧ ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ 𝑃𝑎 ∈ ( 𝑑 𝐶 ) ) ) → 𝑥𝑃 )
13 12 abssi { 𝑥 ∣ ∃ 𝑑𝑎 ( 𝑥 = ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∧ ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ 𝑃𝑎 ∈ ( 𝑑 𝐶 ) ) ) } ⊆ 𝑃
14 4 13 eqsstri { ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∣ ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ 𝑃𝑎 ∈ ( 𝑑 𝐶 ) ) } ⊆ 𝑃