Description: A provable pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mppsval.p | ⊢ 𝑃 = ( mPreSt ‘ 𝑇 ) | |
| mppsval.j | ⊢ 𝐽 = ( mPPSt ‘ 𝑇 ) | ||
| Assertion | mppspst | ⊢ 𝐽 ⊆ 𝑃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mppsval.p | ⊢ 𝑃 = ( mPreSt ‘ 𝑇 ) | |
| 2 | mppsval.j | ⊢ 𝐽 = ( mPPSt ‘ 𝑇 ) | |
| 3 | eqid | ⊢ ( mCls ‘ 𝑇 ) = ( mCls ‘ 𝑇 ) | |
| 4 | 1 2 3 | mppsval | ⊢ 𝐽 = { 〈 〈 𝑑 , ℎ 〉 , 𝑎 〉 ∣ ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ 𝑃 ∧ 𝑎 ∈ ( 𝑑 ( mCls ‘ 𝑇 ) ℎ ) ) } |
| 5 | 1 2 3 | mppspstlem | ⊢ { 〈 〈 𝑑 , ℎ 〉 , 𝑎 〉 ∣ ( 〈 𝑑 , ℎ , 𝑎 〉 ∈ 𝑃 ∧ 𝑎 ∈ ( 𝑑 ( mCls ‘ 𝑇 ) ℎ ) ) } ⊆ 𝑃 |
| 6 | 4 5 | eqsstri | ⊢ 𝐽 ⊆ 𝑃 |