Metamath Proof Explorer


Theorem mppspst

Description: A provable pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mppsval.p 𝑃 = ( mPreSt ‘ 𝑇 )
mppsval.j 𝐽 = ( mPPSt ‘ 𝑇 )
Assertion mppspst 𝐽𝑃

Proof

Step Hyp Ref Expression
1 mppsval.p 𝑃 = ( mPreSt ‘ 𝑇 )
2 mppsval.j 𝐽 = ( mPPSt ‘ 𝑇 )
3 eqid ( mCls ‘ 𝑇 ) = ( mCls ‘ 𝑇 )
4 1 2 3 mppsval 𝐽 = { ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∣ ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ 𝑃𝑎 ∈ ( 𝑑 ( mCls ‘ 𝑇 ) ) ) }
5 1 2 3 mppspstlem { ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∣ ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ 𝑃𝑎 ∈ ( 𝑑 ( mCls ‘ 𝑇 ) ) ) } ⊆ 𝑃
6 4 5 eqsstri 𝐽𝑃