Metamath Proof Explorer


Theorem elmpps

Description: Definition of a provable pre-statement, essentially just a reorganization of the arguments of df-mcls . (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mppsval.p P = mPreSt T
mppsval.j J = mPPSt T
mppsval.c C = mCls T
Assertion elmpps D H A J D H A P A D C H

Proof

Step Hyp Ref Expression
1 mppsval.p P = mPreSt T
2 mppsval.j J = mPPSt T
3 mppsval.c C = mCls T
4 df-ot D H A = D H A
5 1 2 3 mppsval J = d h a | d h a P a d C h
6 4 5 eleq12i D H A J D H A d h a | d h a P a d C h
7 oprabss d h a | d h a P a d C h V × V × V
8 7 sseli D H A d h a | d h a P a d C h D H A V × V × V
9 1 mpstssv P V × V × V
10 9 sseli D H A P D H A V × V × V
11 4 10 eqeltrrid D H A P D H A V × V × V
12 11 adantr D H A P A D C H D H A V × V × V
13 opelxp D H A V × V × V D H V × V A V
14 opelxp D H V × V D V H V
15 simp1 d = D h = H a = A d = D
16 simp2 d = D h = H a = A h = H
17 simp3 d = D h = H a = A a = A
18 15 16 17 oteq123d d = D h = H a = A d h a = D H A
19 18 eleq1d d = D h = H a = A d h a P D H A P
20 15 16 oveq12d d = D h = H a = A d C h = D C H
21 17 20 eleq12d d = D h = H a = A a d C h A D C H
22 19 21 anbi12d d = D h = H a = A d h a P a d C h D H A P A D C H
23 22 eloprabga D V H V A V D H A d h a | d h a P a d C h D H A P A D C H
24 23 3expa D V H V A V D H A d h a | d h a P a d C h D H A P A D C H
25 14 24 sylanb D H V × V A V D H A d h a | d h a P a d C h D H A P A D C H
26 13 25 sylbi D H A V × V × V D H A d h a | d h a P a d C h D H A P A D C H
27 8 12 26 pm5.21nii D H A d h a | d h a P a d C h D H A P A D C H
28 6 27 bitri D H A J D H A P A D C H