Metamath Proof Explorer


Theorem elmpps

Description: Definition of a provable pre-statement, essentially just a reorganization of the arguments of df-mcls . (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mppsval.p 𝑃 = ( mPreSt ‘ 𝑇 )
mppsval.j 𝐽 = ( mPPSt ‘ 𝑇 )
mppsval.c 𝐶 = ( mCls ‘ 𝑇 )
Assertion elmpps ( ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ 𝐽 ↔ ( ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ 𝑃𝐴 ∈ ( 𝐷 𝐶 𝐻 ) ) )

Proof

Step Hyp Ref Expression
1 mppsval.p 𝑃 = ( mPreSt ‘ 𝑇 )
2 mppsval.j 𝐽 = ( mPPSt ‘ 𝑇 )
3 mppsval.c 𝐶 = ( mCls ‘ 𝑇 )
4 df-ot 𝐷 , 𝐻 , 𝐴 ⟩ = ⟨ ⟨ 𝐷 , 𝐻 ⟩ , 𝐴
5 1 2 3 mppsval 𝐽 = { ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∣ ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ 𝑃𝑎 ∈ ( 𝑑 𝐶 ) ) }
6 4 5 eleq12i ( ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ 𝐽 ↔ ⟨ ⟨ 𝐷 , 𝐻 ⟩ , 𝐴 ⟩ ∈ { ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∣ ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ 𝑃𝑎 ∈ ( 𝑑 𝐶 ) ) } )
7 oprabss { ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∣ ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ 𝑃𝑎 ∈ ( 𝑑 𝐶 ) ) } ⊆ ( ( V × V ) × V )
8 7 sseli ( ⟨ ⟨ 𝐷 , 𝐻 ⟩ , 𝐴 ⟩ ∈ { ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∣ ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ 𝑃𝑎 ∈ ( 𝑑 𝐶 ) ) } → ⟨ ⟨ 𝐷 , 𝐻 ⟩ , 𝐴 ⟩ ∈ ( ( V × V ) × V ) )
9 1 mpstssv 𝑃 ⊆ ( ( V × V ) × V )
10 9 sseli ( ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ 𝑃 → ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ ( ( V × V ) × V ) )
11 4 10 eqeltrrid ( ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ 𝑃 → ⟨ ⟨ 𝐷 , 𝐻 ⟩ , 𝐴 ⟩ ∈ ( ( V × V ) × V ) )
12 11 adantr ( ( ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ 𝑃𝐴 ∈ ( 𝐷 𝐶 𝐻 ) ) → ⟨ ⟨ 𝐷 , 𝐻 ⟩ , 𝐴 ⟩ ∈ ( ( V × V ) × V ) )
13 opelxp ( ⟨ ⟨ 𝐷 , 𝐻 ⟩ , 𝐴 ⟩ ∈ ( ( V × V ) × V ) ↔ ( ⟨ 𝐷 , 𝐻 ⟩ ∈ ( V × V ) ∧ 𝐴 ∈ V ) )
14 opelxp ( ⟨ 𝐷 , 𝐻 ⟩ ∈ ( V × V ) ↔ ( 𝐷 ∈ V ∧ 𝐻 ∈ V ) )
15 simp1 ( ( 𝑑 = 𝐷 = 𝐻𝑎 = 𝐴 ) → 𝑑 = 𝐷 )
16 simp2 ( ( 𝑑 = 𝐷 = 𝐻𝑎 = 𝐴 ) → = 𝐻 )
17 simp3 ( ( 𝑑 = 𝐷 = 𝐻𝑎 = 𝐴 ) → 𝑎 = 𝐴 )
18 15 16 17 oteq123d ( ( 𝑑 = 𝐷 = 𝐻𝑎 = 𝐴 ) → ⟨ 𝑑 , , 𝑎 ⟩ = ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ )
19 18 eleq1d ( ( 𝑑 = 𝐷 = 𝐻𝑎 = 𝐴 ) → ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ 𝑃 ↔ ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ 𝑃 ) )
20 15 16 oveq12d ( ( 𝑑 = 𝐷 = 𝐻𝑎 = 𝐴 ) → ( 𝑑 𝐶 ) = ( 𝐷 𝐶 𝐻 ) )
21 17 20 eleq12d ( ( 𝑑 = 𝐷 = 𝐻𝑎 = 𝐴 ) → ( 𝑎 ∈ ( 𝑑 𝐶 ) ↔ 𝐴 ∈ ( 𝐷 𝐶 𝐻 ) ) )
22 19 21 anbi12d ( ( 𝑑 = 𝐷 = 𝐻𝑎 = 𝐴 ) → ( ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ 𝑃𝑎 ∈ ( 𝑑 𝐶 ) ) ↔ ( ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ 𝑃𝐴 ∈ ( 𝐷 𝐶 𝐻 ) ) ) )
23 22 eloprabga ( ( 𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V ) → ( ⟨ ⟨ 𝐷 , 𝐻 ⟩ , 𝐴 ⟩ ∈ { ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∣ ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ 𝑃𝑎 ∈ ( 𝑑 𝐶 ) ) } ↔ ( ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ 𝑃𝐴 ∈ ( 𝐷 𝐶 𝐻 ) ) ) )
24 23 3expa ( ( ( 𝐷 ∈ V ∧ 𝐻 ∈ V ) ∧ 𝐴 ∈ V ) → ( ⟨ ⟨ 𝐷 , 𝐻 ⟩ , 𝐴 ⟩ ∈ { ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∣ ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ 𝑃𝑎 ∈ ( 𝑑 𝐶 ) ) } ↔ ( ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ 𝑃𝐴 ∈ ( 𝐷 𝐶 𝐻 ) ) ) )
25 14 24 sylanb ( ( ⟨ 𝐷 , 𝐻 ⟩ ∈ ( V × V ) ∧ 𝐴 ∈ V ) → ( ⟨ ⟨ 𝐷 , 𝐻 ⟩ , 𝐴 ⟩ ∈ { ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∣ ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ 𝑃𝑎 ∈ ( 𝑑 𝐶 ) ) } ↔ ( ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ 𝑃𝐴 ∈ ( 𝐷 𝐶 𝐻 ) ) ) )
26 13 25 sylbi ( ⟨ ⟨ 𝐷 , 𝐻 ⟩ , 𝐴 ⟩ ∈ ( ( V × V ) × V ) → ( ⟨ ⟨ 𝐷 , 𝐻 ⟩ , 𝐴 ⟩ ∈ { ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∣ ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ 𝑃𝑎 ∈ ( 𝑑 𝐶 ) ) } ↔ ( ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ 𝑃𝐴 ∈ ( 𝐷 𝐶 𝐻 ) ) ) )
27 8 12 26 pm5.21nii ( ⟨ ⟨ 𝐷 , 𝐻 ⟩ , 𝐴 ⟩ ∈ { ⟨ ⟨ 𝑑 , ⟩ , 𝑎 ⟩ ∣ ( ⟨ 𝑑 , , 𝑎 ⟩ ∈ 𝑃𝑎 ∈ ( 𝑑 𝐶 ) ) } ↔ ( ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ 𝑃𝐴 ∈ ( 𝐷 𝐶 𝐻 ) ) )
28 6 27 bitri ( ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ 𝐽 ↔ ( ⟨ 𝐷 , 𝐻 , 𝐴 ⟩ ∈ 𝑃𝐴 ∈ ( 𝐷 𝐶 𝐻 ) ) )