Metamath Proof Explorer


Theorem elmthm

Description: A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mthmval.r R=mStRedT
mthmval.j J=mPPStT
mthmval.u U=mThmT
Assertion elmthm XUxJRx=RX

Proof

Step Hyp Ref Expression
1 mthmval.r R=mStRedT
2 mthmval.j J=mPPStT
3 mthmval.u U=mThmT
4 1 2 3 mthmval U=R-1RJ
5 4 eleq2i XUXR-1RJ
6 eqid mPreStT=mPreStT
7 6 1 msrf R:mPreStTmPreStT
8 ffn R:mPreStTmPreStTRFnmPreStT
9 7 8 ax-mp RFnmPreStT
10 elpreima RFnmPreStTXR-1RJXmPreStTRXRJ
11 9 10 ax-mp XR-1RJXmPreStTRXRJ
12 6 2 mppspst JmPreStT
13 fvelimab RFnmPreStTJmPreStTRXRJxJRx=RX
14 9 12 13 mp2an RXRJxJRx=RX
15 14 anbi2i XmPreStTRXRJXmPreStTxJRx=RX
16 12 sseli xJxmPreStT
17 6 1 msrrcl Rx=RXxmPreStTXmPreStT
18 16 17 syl5ibcom xJRx=RXXmPreStT
19 18 rexlimiv xJRx=RXXmPreStT
20 19 pm4.71ri xJRx=RXXmPreStTxJRx=RX
21 15 20 bitr4i XmPreStTRXRJxJRx=RX
22 5 11 21 3bitri XUxJRx=RX