Description: A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mthmval.r | |
|
mthmval.j | |
||
mthmval.u | |
||
Assertion | elmthm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mthmval.r | |
|
2 | mthmval.j | |
|
3 | mthmval.u | |
|
4 | 1 2 3 | mthmval | |
5 | 4 | eleq2i | |
6 | eqid | |
|
7 | 6 1 | msrf | |
8 | ffn | |
|
9 | 7 8 | ax-mp | |
10 | elpreima | |
|
11 | 9 10 | ax-mp | |
12 | 6 2 | mppspst | |
13 | fvelimab | |
|
14 | 9 12 13 | mp2an | |
15 | 14 | anbi2i | |
16 | 12 | sseli | |
17 | 6 1 | msrrcl | |
18 | 16 17 | syl5ibcom | |
19 | 18 | rexlimiv | |
20 | 19 | pm4.71ri | |
21 | 15 20 | bitr4i | |
22 | 5 11 21 | 3bitri | |