Description: A statement whose reduct is the reduct of a provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mthmval.r | |
|
mthmval.j | |
||
mthmval.u | |
||
Assertion | mthmi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mthmval.r | |
|
2 | mthmval.j | |
|
3 | mthmval.u | |
|
4 | fveqeq2 | |
|
5 | 4 | rspcev | |
6 | 1 2 3 | elmthm | |
7 | 5 6 | sylibr | |