Metamath Proof Explorer


Theorem mthmi

Description: A statement whose reduct is the reduct of a provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mthmval.r R=mStRedT
mthmval.j J=mPPStT
mthmval.u U=mThmT
Assertion mthmi XJRX=RYYU

Proof

Step Hyp Ref Expression
1 mthmval.r R=mStRedT
2 mthmval.j J=mPPStT
3 mthmval.u U=mThmT
4 fveqeq2 x=XRx=RYRX=RY
5 4 rspcev XJRX=RYxJRx=RY
6 1 2 3 elmthm YUxJRx=RY
7 5 6 sylibr XJRX=RYYU