Metamath Proof Explorer


Theorem mthmi

Description: A statement whose reduct is the reduct of a provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mthmval.r
|- R = ( mStRed ` T )
mthmval.j
|- J = ( mPPSt ` T )
mthmval.u
|- U = ( mThm ` T )
Assertion mthmi
|- ( ( X e. J /\ ( R ` X ) = ( R ` Y ) ) -> Y e. U )

Proof

Step Hyp Ref Expression
1 mthmval.r
 |-  R = ( mStRed ` T )
2 mthmval.j
 |-  J = ( mPPSt ` T )
3 mthmval.u
 |-  U = ( mThm ` T )
4 fveqeq2
 |-  ( x = X -> ( ( R ` x ) = ( R ` Y ) <-> ( R ` X ) = ( R ` Y ) ) )
5 4 rspcev
 |-  ( ( X e. J /\ ( R ` X ) = ( R ` Y ) ) -> E. x e. J ( R ` x ) = ( R ` Y ) )
6 1 2 3 elmthm
 |-  ( Y e. U <-> E. x e. J ( R ` x ) = ( R ` Y ) )
7 5 6 sylibr
 |-  ( ( X e. J /\ ( R ` X ) = ( R ` Y ) ) -> Y e. U )