Description: A statement whose reduct is the reduct of a provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mthmval.r | |- R = ( mStRed ` T ) |
|
| mthmval.j | |- J = ( mPPSt ` T ) |
||
| mthmval.u | |- U = ( mThm ` T ) |
||
| Assertion | mthmi | |- ( ( X e. J /\ ( R ` X ) = ( R ` Y ) ) -> Y e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mthmval.r | |- R = ( mStRed ` T ) |
|
| 2 | mthmval.j | |- J = ( mPPSt ` T ) |
|
| 3 | mthmval.u | |- U = ( mThm ` T ) |
|
| 4 | fveqeq2 | |- ( x = X -> ( ( R ` x ) = ( R ` Y ) <-> ( R ` X ) = ( R ` Y ) ) ) |
|
| 5 | 4 | rspcev | |- ( ( X e. J /\ ( R ` X ) = ( R ` Y ) ) -> E. x e. J ( R ` x ) = ( R ` Y ) ) |
| 6 | 1 2 3 | elmthm | |- ( Y e. U <-> E. x e. J ( R ` x ) = ( R ` Y ) ) |
| 7 | 5 6 | sylibr | |- ( ( X e. J /\ ( R ` X ) = ( R ` Y ) ) -> Y e. U ) |