Description: A statement whose reduct is the reduct of a provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mthmval.r | ⊢ 𝑅 = ( mStRed ‘ 𝑇 ) | |
mthmval.j | ⊢ 𝐽 = ( mPPSt ‘ 𝑇 ) | ||
mthmval.u | ⊢ 𝑈 = ( mThm ‘ 𝑇 ) | ||
Assertion | mthmi | ⊢ ( ( 𝑋 ∈ 𝐽 ∧ ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) ) → 𝑌 ∈ 𝑈 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mthmval.r | ⊢ 𝑅 = ( mStRed ‘ 𝑇 ) | |
2 | mthmval.j | ⊢ 𝐽 = ( mPPSt ‘ 𝑇 ) | |
3 | mthmval.u | ⊢ 𝑈 = ( mThm ‘ 𝑇 ) | |
4 | fveqeq2 | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑅 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑌 ) ↔ ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) ) ) | |
5 | 4 | rspcev | ⊢ ( ( 𝑋 ∈ 𝐽 ∧ ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) ) → ∃ 𝑥 ∈ 𝐽 ( 𝑅 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑌 ) ) |
6 | 1 2 3 | elmthm | ⊢ ( 𝑌 ∈ 𝑈 ↔ ∃ 𝑥 ∈ 𝐽 ( 𝑅 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑌 ) ) |
7 | 5 6 | sylibr | ⊢ ( ( 𝑋 ∈ 𝐽 ∧ ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) ) → 𝑌 ∈ 𝑈 ) |