| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mthmsta.u |
⊢ 𝑈 = ( mThm ‘ 𝑇 ) |
| 2 |
|
mthmsta.s |
⊢ 𝑆 = ( mPreSt ‘ 𝑇 ) |
| 3 |
|
eqid |
⊢ ( mStRed ‘ 𝑇 ) = ( mStRed ‘ 𝑇 ) |
| 4 |
|
eqid |
⊢ ( mPPSt ‘ 𝑇 ) = ( mPPSt ‘ 𝑇 ) |
| 5 |
3 4 1
|
mthmval |
⊢ 𝑈 = ( ◡ ( mStRed ‘ 𝑇 ) “ ( ( mStRed ‘ 𝑇 ) “ ( mPPSt ‘ 𝑇 ) ) ) |
| 6 |
|
cnvimass |
⊢ ( ◡ ( mStRed ‘ 𝑇 ) “ ( ( mStRed ‘ 𝑇 ) “ ( mPPSt ‘ 𝑇 ) ) ) ⊆ dom ( mStRed ‘ 𝑇 ) |
| 7 |
2 3
|
msrf |
⊢ ( mStRed ‘ 𝑇 ) : 𝑆 ⟶ 𝑆 |
| 8 |
7
|
fdmi |
⊢ dom ( mStRed ‘ 𝑇 ) = 𝑆 |
| 9 |
6 8
|
sseqtri |
⊢ ( ◡ ( mStRed ‘ 𝑇 ) “ ( ( mStRed ‘ 𝑇 ) “ ( mPPSt ‘ 𝑇 ) ) ) ⊆ 𝑆 |
| 10 |
5 9
|
eqsstri |
⊢ 𝑈 ⊆ 𝑆 |