Metamath Proof Explorer


Theorem mthmsta

Description: A theorem is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mthmsta.u 𝑈 = ( mThm ‘ 𝑇 )
mthmsta.s 𝑆 = ( mPreSt ‘ 𝑇 )
Assertion mthmsta 𝑈𝑆

Proof

Step Hyp Ref Expression
1 mthmsta.u 𝑈 = ( mThm ‘ 𝑇 )
2 mthmsta.s 𝑆 = ( mPreSt ‘ 𝑇 )
3 eqid ( mStRed ‘ 𝑇 ) = ( mStRed ‘ 𝑇 )
4 eqid ( mPPSt ‘ 𝑇 ) = ( mPPSt ‘ 𝑇 )
5 3 4 1 mthmval 𝑈 = ( ( mStRed ‘ 𝑇 ) “ ( ( mStRed ‘ 𝑇 ) “ ( mPPSt ‘ 𝑇 ) ) )
6 cnvimass ( ( mStRed ‘ 𝑇 ) “ ( ( mStRed ‘ 𝑇 ) “ ( mPPSt ‘ 𝑇 ) ) ) ⊆ dom ( mStRed ‘ 𝑇 )
7 2 3 msrf ( mStRed ‘ 𝑇 ) : 𝑆𝑆
8 7 fdmi dom ( mStRed ‘ 𝑇 ) = 𝑆
9 6 8 sseqtri ( ( mStRed ‘ 𝑇 ) “ ( ( mStRed ‘ 𝑇 ) “ ( mPPSt ‘ 𝑇 ) ) ) ⊆ 𝑆
10 5 9 eqsstri 𝑈𝑆