Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Mario Carneiro
Metamath formal systems
mthmsta
Next ⟩
mppsthm
Metamath Proof Explorer
Ascii
Unicode
Theorem
mthmsta
Description:
A theorem is a pre-statement.
(Contributed by
Mario Carneiro
, 18-Jul-2016)
Ref
Expression
Hypotheses
mthmsta.u
⊢
U
=
mThm
⁡
T
mthmsta.s
⊢
S
=
mPreSt
⁡
T
Assertion
mthmsta
⊢
U
⊆
S
Proof
Step
Hyp
Ref
Expression
1
mthmsta.u
⊢
U
=
mThm
⁡
T
2
mthmsta.s
⊢
S
=
mPreSt
⁡
T
3
eqid
⊢
mStRed
⁡
T
=
mStRed
⁡
T
4
eqid
⊢
mPPSt
⁡
T
=
mPPSt
⁡
T
5
3
4
1
mthmval
⊢
U
=
mStRed
⁡
T
-1
mStRed
⁡
T
mPPSt
⁡
T
6
cnvimass
⊢
mStRed
⁡
T
-1
mStRed
⁡
T
mPPSt
⁡
T
⊆
dom
⁡
mStRed
⁡
T
7
2
3
msrf
⊢
mStRed
⁡
T
:
S
⟶
S
8
7
fdmi
⊢
dom
⁡
mStRed
⁡
T
=
S
9
6
8
sseqtri
⊢
mStRed
⁡
T
-1
mStRed
⁡
T
mPPSt
⁡
T
⊆
S
10
5
9
eqsstri
⊢
U
⊆
S