Metamath Proof Explorer


Theorem mthmsta

Description: A theorem is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mthmsta.u U=mThmT
mthmsta.s S=mPreStT
Assertion mthmsta US

Proof

Step Hyp Ref Expression
1 mthmsta.u U=mThmT
2 mthmsta.s S=mPreStT
3 eqid mStRedT=mStRedT
4 eqid mPPStT=mPPStT
5 3 4 1 mthmval U=mStRedT-1mStRedTmPPStT
6 cnvimass mStRedT-1mStRedTmPPStTdommStRedT
7 2 3 msrf mStRedT:SS
8 7 fdmi dommStRedT=S
9 6 8 sseqtri mStRedT-1mStRedTmPPStTS
10 5 9 eqsstri US