Metamath Proof Explorer


Theorem mthmsta

Description: A theorem is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mthmsta.u U = mThm T
mthmsta.s S = mPreSt T
Assertion mthmsta U S

Proof

Step Hyp Ref Expression
1 mthmsta.u U = mThm T
2 mthmsta.s S = mPreSt T
3 eqid mStRed T = mStRed T
4 eqid mPPSt T = mPPSt T
5 3 4 1 mthmval U = mStRed T -1 mStRed T mPPSt T
6 cnvimass mStRed T -1 mStRed T mPPSt T dom mStRed T
7 2 3 msrf mStRed T : S S
8 7 fdmi dom mStRed T = S
9 6 8 sseqtri mStRed T -1 mStRed T mPPSt T S
10 5 9 eqsstri U S