Metamath Proof Explorer


Theorem mthmval

Description: A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. Unlike the difference between pre-statement and statement, this application of the reduct is not necessarily trivial: there are theorems that are not themselves provable but are provable once enough "dummy variables" are introduced. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mthmval.r R=mStRedT
mthmval.j J=mPPStT
mthmval.u U=mThmT
Assertion mthmval U=R-1RJ

Proof

Step Hyp Ref Expression
1 mthmval.r R=mStRedT
2 mthmval.j J=mPPStT
3 mthmval.u U=mThmT
4 fveq2 t=TmStRedt=mStRedT
5 4 1 eqtr4di t=TmStRedt=R
6 5 cnveqd t=TmStRedt-1=R-1
7 fveq2 t=TmPPStt=mPPStT
8 7 2 eqtr4di t=TmPPStt=J
9 5 8 imaeq12d t=TmStRedtmPPStt=RJ
10 6 9 imaeq12d t=TmStRedt-1mStRedtmPPStt=R-1RJ
11 df-mthm mThm=tVmStRedt-1mStRedtmPPStt
12 fvex mStRedtV
13 12 cnvex mStRedt-1V
14 imaexg mStRedt-1VmStRedt-1mStRedtmPPSttV
15 13 14 ax-mp mStRedt-1mStRedtmPPSttV
16 10 11 15 fvmpt3i TVmThmT=R-1RJ
17 0ima RJ=
18 17 eqcomi =RJ
19 fvprc ¬TVmThmT=
20 fvprc ¬TVmStRedT=
21 1 20 eqtrid ¬TVR=
22 21 cnveqd ¬TVR-1=-1
23 cnv0 -1=
24 22 23 eqtrdi ¬TVR-1=
25 24 imaeq1d ¬TVR-1RJ=RJ
26 18 19 25 3eqtr4a ¬TVmThmT=R-1RJ
27 16 26 pm2.61i mThmT=R-1RJ
28 3 27 eqtri U=R-1RJ