Metamath Proof Explorer


Theorem mthmsta

Description: A theorem is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mthmsta.u
|- U = ( mThm ` T )
mthmsta.s
|- S = ( mPreSt ` T )
Assertion mthmsta
|- U C_ S

Proof

Step Hyp Ref Expression
1 mthmsta.u
 |-  U = ( mThm ` T )
2 mthmsta.s
 |-  S = ( mPreSt ` T )
3 eqid
 |-  ( mStRed ` T ) = ( mStRed ` T )
4 eqid
 |-  ( mPPSt ` T ) = ( mPPSt ` T )
5 3 4 1 mthmval
 |-  U = ( `' ( mStRed ` T ) " ( ( mStRed ` T ) " ( mPPSt ` T ) ) )
6 cnvimass
 |-  ( `' ( mStRed ` T ) " ( ( mStRed ` T ) " ( mPPSt ` T ) ) ) C_ dom ( mStRed ` T )
7 2 3 msrf
 |-  ( mStRed ` T ) : S --> S
8 7 fdmi
 |-  dom ( mStRed ` T ) = S
9 6 8 sseqtri
 |-  ( `' ( mStRed ` T ) " ( ( mStRed ` T ) " ( mPPSt ` T ) ) ) C_ S
10 5 9 eqsstri
 |-  U C_ S