| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mthmsta.u |
|- U = ( mThm ` T ) |
| 2 |
|
mthmsta.s |
|- S = ( mPreSt ` T ) |
| 3 |
|
eqid |
|- ( mStRed ` T ) = ( mStRed ` T ) |
| 4 |
|
eqid |
|- ( mPPSt ` T ) = ( mPPSt ` T ) |
| 5 |
3 4 1
|
mthmval |
|- U = ( `' ( mStRed ` T ) " ( ( mStRed ` T ) " ( mPPSt ` T ) ) ) |
| 6 |
|
cnvimass |
|- ( `' ( mStRed ` T ) " ( ( mStRed ` T ) " ( mPPSt ` T ) ) ) C_ dom ( mStRed ` T ) |
| 7 |
2 3
|
msrf |
|- ( mStRed ` T ) : S --> S |
| 8 |
7
|
fdmi |
|- dom ( mStRed ` T ) = S |
| 9 |
6 8
|
sseqtri |
|- ( `' ( mStRed ` T ) " ( ( mStRed ` T ) " ( mPPSt ` T ) ) ) C_ S |
| 10 |
5 9
|
eqsstri |
|- U C_ S |