Step |
Hyp |
Ref |
Expression |
1 |
|
mthmval.r |
⊢ 𝑅 = ( mStRed ‘ 𝑇 ) |
2 |
|
mthmval.j |
⊢ 𝐽 = ( mPPSt ‘ 𝑇 ) |
3 |
|
mthmval.u |
⊢ 𝑈 = ( mThm ‘ 𝑇 ) |
4 |
1 2 3
|
mthmval |
⊢ 𝑈 = ( ◡ 𝑅 “ ( 𝑅 “ 𝐽 ) ) |
5 |
4
|
eleq2i |
⊢ ( 𝑋 ∈ 𝑈 ↔ 𝑋 ∈ ( ◡ 𝑅 “ ( 𝑅 “ 𝐽 ) ) ) |
6 |
|
eqid |
⊢ ( mPreSt ‘ 𝑇 ) = ( mPreSt ‘ 𝑇 ) |
7 |
6 1
|
msrf |
⊢ 𝑅 : ( mPreSt ‘ 𝑇 ) ⟶ ( mPreSt ‘ 𝑇 ) |
8 |
|
ffn |
⊢ ( 𝑅 : ( mPreSt ‘ 𝑇 ) ⟶ ( mPreSt ‘ 𝑇 ) → 𝑅 Fn ( mPreSt ‘ 𝑇 ) ) |
9 |
7 8
|
ax-mp |
⊢ 𝑅 Fn ( mPreSt ‘ 𝑇 ) |
10 |
|
elpreima |
⊢ ( 𝑅 Fn ( mPreSt ‘ 𝑇 ) → ( 𝑋 ∈ ( ◡ 𝑅 “ ( 𝑅 “ 𝐽 ) ) ↔ ( 𝑋 ∈ ( mPreSt ‘ 𝑇 ) ∧ ( 𝑅 ‘ 𝑋 ) ∈ ( 𝑅 “ 𝐽 ) ) ) ) |
11 |
9 10
|
ax-mp |
⊢ ( 𝑋 ∈ ( ◡ 𝑅 “ ( 𝑅 “ 𝐽 ) ) ↔ ( 𝑋 ∈ ( mPreSt ‘ 𝑇 ) ∧ ( 𝑅 ‘ 𝑋 ) ∈ ( 𝑅 “ 𝐽 ) ) ) |
12 |
6 2
|
mppspst |
⊢ 𝐽 ⊆ ( mPreSt ‘ 𝑇 ) |
13 |
|
fvelimab |
⊢ ( ( 𝑅 Fn ( mPreSt ‘ 𝑇 ) ∧ 𝐽 ⊆ ( mPreSt ‘ 𝑇 ) ) → ( ( 𝑅 ‘ 𝑋 ) ∈ ( 𝑅 “ 𝐽 ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝑅 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑋 ) ) ) |
14 |
9 12 13
|
mp2an |
⊢ ( ( 𝑅 ‘ 𝑋 ) ∈ ( 𝑅 “ 𝐽 ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝑅 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑋 ) ) |
15 |
14
|
anbi2i |
⊢ ( ( 𝑋 ∈ ( mPreSt ‘ 𝑇 ) ∧ ( 𝑅 ‘ 𝑋 ) ∈ ( 𝑅 “ 𝐽 ) ) ↔ ( 𝑋 ∈ ( mPreSt ‘ 𝑇 ) ∧ ∃ 𝑥 ∈ 𝐽 ( 𝑅 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑋 ) ) ) |
16 |
12
|
sseli |
⊢ ( 𝑥 ∈ 𝐽 → 𝑥 ∈ ( mPreSt ‘ 𝑇 ) ) |
17 |
6 1
|
msrrcl |
⊢ ( ( 𝑅 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑋 ) → ( 𝑥 ∈ ( mPreSt ‘ 𝑇 ) ↔ 𝑋 ∈ ( mPreSt ‘ 𝑇 ) ) ) |
18 |
16 17
|
syl5ibcom |
⊢ ( 𝑥 ∈ 𝐽 → ( ( 𝑅 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑋 ) → 𝑋 ∈ ( mPreSt ‘ 𝑇 ) ) ) |
19 |
18
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ 𝐽 ( 𝑅 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑋 ) → 𝑋 ∈ ( mPreSt ‘ 𝑇 ) ) |
20 |
19
|
pm4.71ri |
⊢ ( ∃ 𝑥 ∈ 𝐽 ( 𝑅 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑋 ) ↔ ( 𝑋 ∈ ( mPreSt ‘ 𝑇 ) ∧ ∃ 𝑥 ∈ 𝐽 ( 𝑅 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑋 ) ) ) |
21 |
15 20
|
bitr4i |
⊢ ( ( 𝑋 ∈ ( mPreSt ‘ 𝑇 ) ∧ ( 𝑅 ‘ 𝑋 ) ∈ ( 𝑅 “ 𝐽 ) ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝑅 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑋 ) ) |
22 |
5 11 21
|
3bitri |
⊢ ( 𝑋 ∈ 𝑈 ↔ ∃ 𝑥 ∈ 𝐽 ( 𝑅 ‘ 𝑥 ) = ( 𝑅 ‘ 𝑋 ) ) |