| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mpstssv.p |
⊢ 𝑃 = ( mPreSt ‘ 𝑇 ) |
| 2 |
|
msrf.r |
⊢ 𝑅 = ( mStRed ‘ 𝑇 ) |
| 3 |
1 2
|
msrf |
⊢ 𝑅 : 𝑃 ⟶ 𝑃 |
| 4 |
3
|
ffvelcdmi |
⊢ ( 𝑋 ∈ 𝑃 → ( 𝑅 ‘ 𝑋 ) ∈ 𝑃 ) |
| 5 |
4
|
a1i |
⊢ ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) → ( 𝑋 ∈ 𝑃 → ( 𝑅 ‘ 𝑋 ) ∈ 𝑃 ) ) |
| 6 |
3
|
ffvelcdmi |
⊢ ( 𝑌 ∈ 𝑃 → ( 𝑅 ‘ 𝑌 ) ∈ 𝑃 ) |
| 7 |
|
eleq1 |
⊢ ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) → ( ( 𝑅 ‘ 𝑋 ) ∈ 𝑃 ↔ ( 𝑅 ‘ 𝑌 ) ∈ 𝑃 ) ) |
| 8 |
6 7
|
imbitrrid |
⊢ ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) → ( 𝑌 ∈ 𝑃 → ( 𝑅 ‘ 𝑋 ) ∈ 𝑃 ) ) |
| 9 |
3
|
fdmi |
⊢ dom 𝑅 = 𝑃 |
| 10 |
|
0nelxp |
⊢ ¬ ∅ ∈ ( ( V × V ) × V ) |
| 11 |
1
|
mpstssv |
⊢ 𝑃 ⊆ ( ( V × V ) × V ) |
| 12 |
11
|
sseli |
⊢ ( ∅ ∈ 𝑃 → ∅ ∈ ( ( V × V ) × V ) ) |
| 13 |
10 12
|
mto |
⊢ ¬ ∅ ∈ 𝑃 |
| 14 |
9 13
|
ndmfvrcl |
⊢ ( ( 𝑅 ‘ 𝑋 ) ∈ 𝑃 → 𝑋 ∈ 𝑃 ) |
| 15 |
14
|
adantl |
⊢ ( ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) ∧ ( 𝑅 ‘ 𝑋 ) ∈ 𝑃 ) → 𝑋 ∈ 𝑃 ) |
| 16 |
7
|
biimpa |
⊢ ( ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) ∧ ( 𝑅 ‘ 𝑋 ) ∈ 𝑃 ) → ( 𝑅 ‘ 𝑌 ) ∈ 𝑃 ) |
| 17 |
9 13
|
ndmfvrcl |
⊢ ( ( 𝑅 ‘ 𝑌 ) ∈ 𝑃 → 𝑌 ∈ 𝑃 ) |
| 18 |
16 17
|
syl |
⊢ ( ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) ∧ ( 𝑅 ‘ 𝑋 ) ∈ 𝑃 ) → 𝑌 ∈ 𝑃 ) |
| 19 |
15 18
|
2thd |
⊢ ( ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) ∧ ( 𝑅 ‘ 𝑋 ) ∈ 𝑃 ) → ( 𝑋 ∈ 𝑃 ↔ 𝑌 ∈ 𝑃 ) ) |
| 20 |
19
|
ex |
⊢ ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) → ( ( 𝑅 ‘ 𝑋 ) ∈ 𝑃 → ( 𝑋 ∈ 𝑃 ↔ 𝑌 ∈ 𝑃 ) ) ) |
| 21 |
5 8 20
|
pm5.21ndd |
⊢ ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) → ( 𝑋 ∈ 𝑃 ↔ 𝑌 ∈ 𝑃 ) ) |