Step |
Hyp |
Ref |
Expression |
1 |
|
mpstssv.p |
⊢ 𝑃 = ( mPreSt ‘ 𝑇 ) |
2 |
|
msrf.r |
⊢ 𝑅 = ( mStRed ‘ 𝑇 ) |
3 |
1 2
|
msrf |
⊢ 𝑅 : 𝑃 ⟶ 𝑃 |
4 |
3
|
ffvelrni |
⊢ ( 𝑋 ∈ 𝑃 → ( 𝑅 ‘ 𝑋 ) ∈ 𝑃 ) |
5 |
4
|
a1i |
⊢ ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) → ( 𝑋 ∈ 𝑃 → ( 𝑅 ‘ 𝑋 ) ∈ 𝑃 ) ) |
6 |
3
|
ffvelrni |
⊢ ( 𝑌 ∈ 𝑃 → ( 𝑅 ‘ 𝑌 ) ∈ 𝑃 ) |
7 |
|
eleq1 |
⊢ ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) → ( ( 𝑅 ‘ 𝑋 ) ∈ 𝑃 ↔ ( 𝑅 ‘ 𝑌 ) ∈ 𝑃 ) ) |
8 |
6 7
|
syl5ibr |
⊢ ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) → ( 𝑌 ∈ 𝑃 → ( 𝑅 ‘ 𝑋 ) ∈ 𝑃 ) ) |
9 |
3
|
fdmi |
⊢ dom 𝑅 = 𝑃 |
10 |
|
0nelxp |
⊢ ¬ ∅ ∈ ( ( V × V ) × V ) |
11 |
1
|
mpstssv |
⊢ 𝑃 ⊆ ( ( V × V ) × V ) |
12 |
11
|
sseli |
⊢ ( ∅ ∈ 𝑃 → ∅ ∈ ( ( V × V ) × V ) ) |
13 |
10 12
|
mto |
⊢ ¬ ∅ ∈ 𝑃 |
14 |
9 13
|
ndmfvrcl |
⊢ ( ( 𝑅 ‘ 𝑋 ) ∈ 𝑃 → 𝑋 ∈ 𝑃 ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) ∧ ( 𝑅 ‘ 𝑋 ) ∈ 𝑃 ) → 𝑋 ∈ 𝑃 ) |
16 |
7
|
biimpa |
⊢ ( ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) ∧ ( 𝑅 ‘ 𝑋 ) ∈ 𝑃 ) → ( 𝑅 ‘ 𝑌 ) ∈ 𝑃 ) |
17 |
9 13
|
ndmfvrcl |
⊢ ( ( 𝑅 ‘ 𝑌 ) ∈ 𝑃 → 𝑌 ∈ 𝑃 ) |
18 |
16 17
|
syl |
⊢ ( ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) ∧ ( 𝑅 ‘ 𝑋 ) ∈ 𝑃 ) → 𝑌 ∈ 𝑃 ) |
19 |
15 18
|
2thd |
⊢ ( ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) ∧ ( 𝑅 ‘ 𝑋 ) ∈ 𝑃 ) → ( 𝑋 ∈ 𝑃 ↔ 𝑌 ∈ 𝑃 ) ) |
20 |
19
|
ex |
⊢ ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) → ( ( 𝑅 ‘ 𝑋 ) ∈ 𝑃 → ( 𝑋 ∈ 𝑃 ↔ 𝑌 ∈ 𝑃 ) ) ) |
21 |
5 8 20
|
pm5.21ndd |
⊢ ( ( 𝑅 ‘ 𝑋 ) = ( 𝑅 ‘ 𝑌 ) → ( 𝑋 ∈ 𝑃 ↔ 𝑌 ∈ 𝑃 ) ) |