Metamath Proof Explorer


Theorem msrrcl

Description: If X and Y have the same reduct, then one is a pre-statement iff the other is. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mpstssv.p 𝑃 = ( mPreSt ‘ 𝑇 )
msrf.r 𝑅 = ( mStRed ‘ 𝑇 )
Assertion msrrcl ( ( 𝑅𝑋 ) = ( 𝑅𝑌 ) → ( 𝑋𝑃𝑌𝑃 ) )

Proof

Step Hyp Ref Expression
1 mpstssv.p 𝑃 = ( mPreSt ‘ 𝑇 )
2 msrf.r 𝑅 = ( mStRed ‘ 𝑇 )
3 1 2 msrf 𝑅 : 𝑃𝑃
4 3 ffvelrni ( 𝑋𝑃 → ( 𝑅𝑋 ) ∈ 𝑃 )
5 4 a1i ( ( 𝑅𝑋 ) = ( 𝑅𝑌 ) → ( 𝑋𝑃 → ( 𝑅𝑋 ) ∈ 𝑃 ) )
6 3 ffvelrni ( 𝑌𝑃 → ( 𝑅𝑌 ) ∈ 𝑃 )
7 eleq1 ( ( 𝑅𝑋 ) = ( 𝑅𝑌 ) → ( ( 𝑅𝑋 ) ∈ 𝑃 ↔ ( 𝑅𝑌 ) ∈ 𝑃 ) )
8 6 7 syl5ibr ( ( 𝑅𝑋 ) = ( 𝑅𝑌 ) → ( 𝑌𝑃 → ( 𝑅𝑋 ) ∈ 𝑃 ) )
9 3 fdmi dom 𝑅 = 𝑃
10 0nelxp ¬ ∅ ∈ ( ( V × V ) × V )
11 1 mpstssv 𝑃 ⊆ ( ( V × V ) × V )
12 11 sseli ( ∅ ∈ 𝑃 → ∅ ∈ ( ( V × V ) × V ) )
13 10 12 mto ¬ ∅ ∈ 𝑃
14 9 13 ndmfvrcl ( ( 𝑅𝑋 ) ∈ 𝑃𝑋𝑃 )
15 14 adantl ( ( ( 𝑅𝑋 ) = ( 𝑅𝑌 ) ∧ ( 𝑅𝑋 ) ∈ 𝑃 ) → 𝑋𝑃 )
16 7 biimpa ( ( ( 𝑅𝑋 ) = ( 𝑅𝑌 ) ∧ ( 𝑅𝑋 ) ∈ 𝑃 ) → ( 𝑅𝑌 ) ∈ 𝑃 )
17 9 13 ndmfvrcl ( ( 𝑅𝑌 ) ∈ 𝑃𝑌𝑃 )
18 16 17 syl ( ( ( 𝑅𝑋 ) = ( 𝑅𝑌 ) ∧ ( 𝑅𝑋 ) ∈ 𝑃 ) → 𝑌𝑃 )
19 15 18 2thd ( ( ( 𝑅𝑋 ) = ( 𝑅𝑌 ) ∧ ( 𝑅𝑋 ) ∈ 𝑃 ) → ( 𝑋𝑃𝑌𝑃 ) )
20 19 ex ( ( 𝑅𝑋 ) = ( 𝑅𝑌 ) → ( ( 𝑅𝑋 ) ∈ 𝑃 → ( 𝑋𝑃𝑌𝑃 ) ) )
21 5 8 20 pm5.21ndd ( ( 𝑅𝑋 ) = ( 𝑅𝑌 ) → ( 𝑋𝑃𝑌𝑃 ) )