| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mpstssv.p |
|- P = ( mPreSt ` T ) |
| 2 |
|
msrf.r |
|- R = ( mStRed ` T ) |
| 3 |
1 2
|
msrf |
|- R : P --> P |
| 4 |
3
|
ffvelcdmi |
|- ( X e. P -> ( R ` X ) e. P ) |
| 5 |
4
|
a1i |
|- ( ( R ` X ) = ( R ` Y ) -> ( X e. P -> ( R ` X ) e. P ) ) |
| 6 |
3
|
ffvelcdmi |
|- ( Y e. P -> ( R ` Y ) e. P ) |
| 7 |
|
eleq1 |
|- ( ( R ` X ) = ( R ` Y ) -> ( ( R ` X ) e. P <-> ( R ` Y ) e. P ) ) |
| 8 |
6 7
|
imbitrrid |
|- ( ( R ` X ) = ( R ` Y ) -> ( Y e. P -> ( R ` X ) e. P ) ) |
| 9 |
3
|
fdmi |
|- dom R = P |
| 10 |
|
0nelxp |
|- -. (/) e. ( ( _V X. _V ) X. _V ) |
| 11 |
1
|
mpstssv |
|- P C_ ( ( _V X. _V ) X. _V ) |
| 12 |
11
|
sseli |
|- ( (/) e. P -> (/) e. ( ( _V X. _V ) X. _V ) ) |
| 13 |
10 12
|
mto |
|- -. (/) e. P |
| 14 |
9 13
|
ndmfvrcl |
|- ( ( R ` X ) e. P -> X e. P ) |
| 15 |
14
|
adantl |
|- ( ( ( R ` X ) = ( R ` Y ) /\ ( R ` X ) e. P ) -> X e. P ) |
| 16 |
7
|
biimpa |
|- ( ( ( R ` X ) = ( R ` Y ) /\ ( R ` X ) e. P ) -> ( R ` Y ) e. P ) |
| 17 |
9 13
|
ndmfvrcl |
|- ( ( R ` Y ) e. P -> Y e. P ) |
| 18 |
16 17
|
syl |
|- ( ( ( R ` X ) = ( R ` Y ) /\ ( R ` X ) e. P ) -> Y e. P ) |
| 19 |
15 18
|
2thd |
|- ( ( ( R ` X ) = ( R ` Y ) /\ ( R ` X ) e. P ) -> ( X e. P <-> Y e. P ) ) |
| 20 |
19
|
ex |
|- ( ( R ` X ) = ( R ` Y ) -> ( ( R ` X ) e. P -> ( X e. P <-> Y e. P ) ) ) |
| 21 |
5 8 20
|
pm5.21ndd |
|- ( ( R ` X ) = ( R ` Y ) -> ( X e. P <-> Y e. P ) ) |