Step |
Hyp |
Ref |
Expression |
1 |
|
mpstssv.p |
|- P = ( mPreSt ` T ) |
2 |
|
msrf.r |
|- R = ( mStRed ` T ) |
3 |
1 2
|
msrf |
|- R : P --> P |
4 |
3
|
ffvelrni |
|- ( X e. P -> ( R ` X ) e. P ) |
5 |
4
|
a1i |
|- ( ( R ` X ) = ( R ` Y ) -> ( X e. P -> ( R ` X ) e. P ) ) |
6 |
3
|
ffvelrni |
|- ( Y e. P -> ( R ` Y ) e. P ) |
7 |
|
eleq1 |
|- ( ( R ` X ) = ( R ` Y ) -> ( ( R ` X ) e. P <-> ( R ` Y ) e. P ) ) |
8 |
6 7
|
syl5ibr |
|- ( ( R ` X ) = ( R ` Y ) -> ( Y e. P -> ( R ` X ) e. P ) ) |
9 |
3
|
fdmi |
|- dom R = P |
10 |
|
0nelxp |
|- -. (/) e. ( ( _V X. _V ) X. _V ) |
11 |
1
|
mpstssv |
|- P C_ ( ( _V X. _V ) X. _V ) |
12 |
11
|
sseli |
|- ( (/) e. P -> (/) e. ( ( _V X. _V ) X. _V ) ) |
13 |
10 12
|
mto |
|- -. (/) e. P |
14 |
9 13
|
ndmfvrcl |
|- ( ( R ` X ) e. P -> X e. P ) |
15 |
14
|
adantl |
|- ( ( ( R ` X ) = ( R ` Y ) /\ ( R ` X ) e. P ) -> X e. P ) |
16 |
7
|
biimpa |
|- ( ( ( R ` X ) = ( R ` Y ) /\ ( R ` X ) e. P ) -> ( R ` Y ) e. P ) |
17 |
9 13
|
ndmfvrcl |
|- ( ( R ` Y ) e. P -> Y e. P ) |
18 |
16 17
|
syl |
|- ( ( ( R ` X ) = ( R ` Y ) /\ ( R ` X ) e. P ) -> Y e. P ) |
19 |
15 18
|
2thd |
|- ( ( ( R ` X ) = ( R ` Y ) /\ ( R ` X ) e. P ) -> ( X e. P <-> Y e. P ) ) |
20 |
19
|
ex |
|- ( ( R ` X ) = ( R ` Y ) -> ( ( R ` X ) e. P -> ( X e. P <-> Y e. P ) ) ) |
21 |
5 8 20
|
pm5.21ndd |
|- ( ( R ` X ) = ( R ` Y ) -> ( X e. P <-> Y e. P ) ) |