Step |
Hyp |
Ref |
Expression |
1 |
|
mthmb.r |
|- R = ( mStRed ` T ) |
2 |
|
mthmb.u |
|- U = ( mThm ` T ) |
3 |
|
eqid |
|- ( mPPSt ` T ) = ( mPPSt ` T ) |
4 |
1 3 2
|
mthmval |
|- U = ( `' R " ( R " ( mPPSt ` T ) ) ) |
5 |
4
|
eleq2i |
|- ( X e. U <-> X e. ( `' R " ( R " ( mPPSt ` T ) ) ) ) |
6 |
|
eqid |
|- ( mPreSt ` T ) = ( mPreSt ` T ) |
7 |
6 1
|
msrf |
|- R : ( mPreSt ` T ) --> ( mPreSt ` T ) |
8 |
|
ffn |
|- ( R : ( mPreSt ` T ) --> ( mPreSt ` T ) -> R Fn ( mPreSt ` T ) ) |
9 |
7 8
|
ax-mp |
|- R Fn ( mPreSt ` T ) |
10 |
|
elpreima |
|- ( R Fn ( mPreSt ` T ) -> ( X e. ( `' R " ( R " ( mPPSt ` T ) ) ) <-> ( X e. ( mPreSt ` T ) /\ ( R ` X ) e. ( R " ( mPPSt ` T ) ) ) ) ) |
11 |
9 10
|
ax-mp |
|- ( X e. ( `' R " ( R " ( mPPSt ` T ) ) ) <-> ( X e. ( mPreSt ` T ) /\ ( R ` X ) e. ( R " ( mPPSt ` T ) ) ) ) |
12 |
5 11
|
bitri |
|- ( X e. U <-> ( X e. ( mPreSt ` T ) /\ ( R ` X ) e. ( R " ( mPPSt ` T ) ) ) ) |
13 |
|
eleq1 |
|- ( ( R ` X ) = ( R ` Y ) -> ( ( R ` X ) e. ( R " ( mPPSt ` T ) ) <-> ( R ` Y ) e. ( R " ( mPPSt ` T ) ) ) ) |
14 |
|
ffun |
|- ( R : ( mPreSt ` T ) --> ( mPreSt ` T ) -> Fun R ) |
15 |
7 14
|
ax-mp |
|- Fun R |
16 |
|
fvelima |
|- ( ( Fun R /\ ( R ` Y ) e. ( R " ( mPPSt ` T ) ) ) -> E. x e. ( mPPSt ` T ) ( R ` x ) = ( R ` Y ) ) |
17 |
15 16
|
mpan |
|- ( ( R ` Y ) e. ( R " ( mPPSt ` T ) ) -> E. x e. ( mPPSt ` T ) ( R ` x ) = ( R ` Y ) ) |
18 |
1 3 2
|
mthmi |
|- ( ( x e. ( mPPSt ` T ) /\ ( R ` x ) = ( R ` Y ) ) -> Y e. U ) |
19 |
18
|
rexlimiva |
|- ( E. x e. ( mPPSt ` T ) ( R ` x ) = ( R ` Y ) -> Y e. U ) |
20 |
17 19
|
syl |
|- ( ( R ` Y ) e. ( R " ( mPPSt ` T ) ) -> Y e. U ) |
21 |
13 20
|
syl6bi |
|- ( ( R ` X ) = ( R ` Y ) -> ( ( R ` X ) e. ( R " ( mPPSt ` T ) ) -> Y e. U ) ) |
22 |
21
|
adantld |
|- ( ( R ` X ) = ( R ` Y ) -> ( ( X e. ( mPreSt ` T ) /\ ( R ` X ) e. ( R " ( mPPSt ` T ) ) ) -> Y e. U ) ) |
23 |
12 22
|
syl5bi |
|- ( ( R ` X ) = ( R ` Y ) -> ( X e. U -> Y e. U ) ) |