Metamath Proof Explorer


Theorem mthmblem

Description: Lemma for mthmb . (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mthmb.r
|- R = ( mStRed ` T )
mthmb.u
|- U = ( mThm ` T )
Assertion mthmblem
|- ( ( R ` X ) = ( R ` Y ) -> ( X e. U -> Y e. U ) )

Proof

Step Hyp Ref Expression
1 mthmb.r
 |-  R = ( mStRed ` T )
2 mthmb.u
 |-  U = ( mThm ` T )
3 eqid
 |-  ( mPPSt ` T ) = ( mPPSt ` T )
4 1 3 2 mthmval
 |-  U = ( `' R " ( R " ( mPPSt ` T ) ) )
5 4 eleq2i
 |-  ( X e. U <-> X e. ( `' R " ( R " ( mPPSt ` T ) ) ) )
6 eqid
 |-  ( mPreSt ` T ) = ( mPreSt ` T )
7 6 1 msrf
 |-  R : ( mPreSt ` T ) --> ( mPreSt ` T )
8 ffn
 |-  ( R : ( mPreSt ` T ) --> ( mPreSt ` T ) -> R Fn ( mPreSt ` T ) )
9 7 8 ax-mp
 |-  R Fn ( mPreSt ` T )
10 elpreima
 |-  ( R Fn ( mPreSt ` T ) -> ( X e. ( `' R " ( R " ( mPPSt ` T ) ) ) <-> ( X e. ( mPreSt ` T ) /\ ( R ` X ) e. ( R " ( mPPSt ` T ) ) ) ) )
11 9 10 ax-mp
 |-  ( X e. ( `' R " ( R " ( mPPSt ` T ) ) ) <-> ( X e. ( mPreSt ` T ) /\ ( R ` X ) e. ( R " ( mPPSt ` T ) ) ) )
12 5 11 bitri
 |-  ( X e. U <-> ( X e. ( mPreSt ` T ) /\ ( R ` X ) e. ( R " ( mPPSt ` T ) ) ) )
13 eleq1
 |-  ( ( R ` X ) = ( R ` Y ) -> ( ( R ` X ) e. ( R " ( mPPSt ` T ) ) <-> ( R ` Y ) e. ( R " ( mPPSt ` T ) ) ) )
14 ffun
 |-  ( R : ( mPreSt ` T ) --> ( mPreSt ` T ) -> Fun R )
15 7 14 ax-mp
 |-  Fun R
16 fvelima
 |-  ( ( Fun R /\ ( R ` Y ) e. ( R " ( mPPSt ` T ) ) ) -> E. x e. ( mPPSt ` T ) ( R ` x ) = ( R ` Y ) )
17 15 16 mpan
 |-  ( ( R ` Y ) e. ( R " ( mPPSt ` T ) ) -> E. x e. ( mPPSt ` T ) ( R ` x ) = ( R ` Y ) )
18 1 3 2 mthmi
 |-  ( ( x e. ( mPPSt ` T ) /\ ( R ` x ) = ( R ` Y ) ) -> Y e. U )
19 18 rexlimiva
 |-  ( E. x e. ( mPPSt ` T ) ( R ` x ) = ( R ` Y ) -> Y e. U )
20 17 19 syl
 |-  ( ( R ` Y ) e. ( R " ( mPPSt ` T ) ) -> Y e. U )
21 13 20 syl6bi
 |-  ( ( R ` X ) = ( R ` Y ) -> ( ( R ` X ) e. ( R " ( mPPSt ` T ) ) -> Y e. U ) )
22 21 adantld
 |-  ( ( R ` X ) = ( R ` Y ) -> ( ( X e. ( mPreSt ` T ) /\ ( R ` X ) e. ( R " ( mPPSt ` T ) ) ) -> Y e. U ) )
23 12 22 syl5bi
 |-  ( ( R ` X ) = ( R ` Y ) -> ( X e. U -> Y e. U ) )