Description: If two statements have the same reduct then one is a theorem iff the other is. (Contributed by Mario Carneiro, 18-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mthmb.r | |- R = ( mStRed ` T ) |
|
| mthmb.u | |- U = ( mThm ` T ) |
||
| Assertion | mthmb | |- ( ( R ` X ) = ( R ` Y ) -> ( X e. U <-> Y e. U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mthmb.r | |- R = ( mStRed ` T ) |
|
| 2 | mthmb.u | |- U = ( mThm ` T ) |
|
| 3 | 1 2 | mthmblem | |- ( ( R ` X ) = ( R ` Y ) -> ( X e. U -> Y e. U ) ) |
| 4 | 1 2 | mthmblem | |- ( ( R ` Y ) = ( R ` X ) -> ( Y e. U -> X e. U ) ) |
| 5 | 4 | eqcoms | |- ( ( R ` X ) = ( R ` Y ) -> ( Y e. U -> X e. U ) ) |
| 6 | 3 5 | impbid | |- ( ( R ` X ) = ( R ` Y ) -> ( X e. U <-> Y e. U ) ) |