Metamath Proof Explorer


Theorem mthmb

Description: If two statements have the same reduct then one is a theorem iff the other is. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mthmb.r
|- R = ( mStRed ` T )
mthmb.u
|- U = ( mThm ` T )
Assertion mthmb
|- ( ( R ` X ) = ( R ` Y ) -> ( X e. U <-> Y e. U ) )

Proof

Step Hyp Ref Expression
1 mthmb.r
 |-  R = ( mStRed ` T )
2 mthmb.u
 |-  U = ( mThm ` T )
3 1 2 mthmblem
 |-  ( ( R ` X ) = ( R ` Y ) -> ( X e. U -> Y e. U ) )
4 1 2 mthmblem
 |-  ( ( R ` Y ) = ( R ` X ) -> ( Y e. U -> X e. U ) )
5 4 eqcoms
 |-  ( ( R ` X ) = ( R ` Y ) -> ( Y e. U -> X e. U ) )
6 3 5 impbid
 |-  ( ( R ` X ) = ( R ` Y ) -> ( X e. U <-> Y e. U ) )