Step |
Hyp |
Ref |
Expression |
1 |
|
mthmpps.r |
|- R = ( mStRed ` T ) |
2 |
|
mthmpps.j |
|- J = ( mPPSt ` T ) |
3 |
|
mthmpps.u |
|- U = ( mThm ` T ) |
4 |
|
mthmpps.d |
|- D = ( mDV ` T ) |
5 |
|
mthmpps.v |
|- V = ( mVars ` T ) |
6 |
|
mthmpps.z |
|- Z = U. ( V " ( H u. { A } ) ) |
7 |
|
mthmpps.m |
|- M = ( C u. ( D \ ( Z X. Z ) ) ) |
8 |
|
eqid |
|- ( mPreSt ` T ) = ( mPreSt ` T ) |
9 |
3 8
|
mthmsta |
|- U C_ ( mPreSt ` T ) |
10 |
|
simpr |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> <. C , H , A >. e. U ) |
11 |
9 10
|
sselid |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> <. C , H , A >. e. ( mPreSt ` T ) ) |
12 |
|
eqid |
|- ( mEx ` T ) = ( mEx ` T ) |
13 |
4 12 8
|
elmpst |
|- ( <. C , H , A >. e. ( mPreSt ` T ) <-> ( ( C C_ D /\ `' C = C ) /\ ( H C_ ( mEx ` T ) /\ H e. Fin ) /\ A e. ( mEx ` T ) ) ) |
14 |
11 13
|
sylib |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( ( C C_ D /\ `' C = C ) /\ ( H C_ ( mEx ` T ) /\ H e. Fin ) /\ A e. ( mEx ` T ) ) ) |
15 |
14
|
simp1d |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( C C_ D /\ `' C = C ) ) |
16 |
15
|
simpld |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> C C_ D ) |
17 |
|
difssd |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( D \ ( Z X. Z ) ) C_ D ) |
18 |
16 17
|
unssd |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( C u. ( D \ ( Z X. Z ) ) ) C_ D ) |
19 |
7 18
|
eqsstrid |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> M C_ D ) |
20 |
15
|
simprd |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> `' C = C ) |
21 |
|
cnvdif |
|- `' ( D \ ( Z X. Z ) ) = ( `' D \ `' ( Z X. Z ) ) |
22 |
|
cnvdif |
|- `' ( ( ( mVR ` T ) X. ( mVR ` T ) ) \ _I ) = ( `' ( ( mVR ` T ) X. ( mVR ` T ) ) \ `' _I ) |
23 |
|
cnvxp |
|- `' ( ( mVR ` T ) X. ( mVR ` T ) ) = ( ( mVR ` T ) X. ( mVR ` T ) ) |
24 |
|
cnvi |
|- `' _I = _I |
25 |
23 24
|
difeq12i |
|- ( `' ( ( mVR ` T ) X. ( mVR ` T ) ) \ `' _I ) = ( ( ( mVR ` T ) X. ( mVR ` T ) ) \ _I ) |
26 |
22 25
|
eqtri |
|- `' ( ( ( mVR ` T ) X. ( mVR ` T ) ) \ _I ) = ( ( ( mVR ` T ) X. ( mVR ` T ) ) \ _I ) |
27 |
|
eqid |
|- ( mVR ` T ) = ( mVR ` T ) |
28 |
27 4
|
mdvval |
|- D = ( ( ( mVR ` T ) X. ( mVR ` T ) ) \ _I ) |
29 |
28
|
cnveqi |
|- `' D = `' ( ( ( mVR ` T ) X. ( mVR ` T ) ) \ _I ) |
30 |
26 29 28
|
3eqtr4i |
|- `' D = D |
31 |
|
cnvxp |
|- `' ( Z X. Z ) = ( Z X. Z ) |
32 |
30 31
|
difeq12i |
|- ( `' D \ `' ( Z X. Z ) ) = ( D \ ( Z X. Z ) ) |
33 |
21 32
|
eqtri |
|- `' ( D \ ( Z X. Z ) ) = ( D \ ( Z X. Z ) ) |
34 |
33
|
a1i |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> `' ( D \ ( Z X. Z ) ) = ( D \ ( Z X. Z ) ) ) |
35 |
20 34
|
uneq12d |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( `' C u. `' ( D \ ( Z X. Z ) ) ) = ( C u. ( D \ ( Z X. Z ) ) ) ) |
36 |
7
|
cnveqi |
|- `' M = `' ( C u. ( D \ ( Z X. Z ) ) ) |
37 |
|
cnvun |
|- `' ( C u. ( D \ ( Z X. Z ) ) ) = ( `' C u. `' ( D \ ( Z X. Z ) ) ) |
38 |
36 37
|
eqtri |
|- `' M = ( `' C u. `' ( D \ ( Z X. Z ) ) ) |
39 |
35 38 7
|
3eqtr4g |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> `' M = M ) |
40 |
19 39
|
jca |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( M C_ D /\ `' M = M ) ) |
41 |
14
|
simp2d |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( H C_ ( mEx ` T ) /\ H e. Fin ) ) |
42 |
14
|
simp3d |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> A e. ( mEx ` T ) ) |
43 |
4 12 8
|
elmpst |
|- ( <. M , H , A >. e. ( mPreSt ` T ) <-> ( ( M C_ D /\ `' M = M ) /\ ( H C_ ( mEx ` T ) /\ H e. Fin ) /\ A e. ( mEx ` T ) ) ) |
44 |
40 41 42 43
|
syl3anbrc |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> <. M , H , A >. e. ( mPreSt ` T ) ) |
45 |
1 2 3
|
elmthm |
|- ( <. C , H , A >. e. U <-> E. x e. J ( R ` x ) = ( R ` <. C , H , A >. ) ) |
46 |
10 45
|
sylib |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> E. x e. J ( R ` x ) = ( R ` <. C , H , A >. ) ) |
47 |
|
eqid |
|- ( mCls ` T ) = ( mCls ` T ) |
48 |
|
simpll |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> T e. mFS ) |
49 |
19
|
adantr |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> M C_ D ) |
50 |
41
|
simpld |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> H C_ ( mEx ` T ) ) |
51 |
50
|
adantr |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> H C_ ( mEx ` T ) ) |
52 |
8 2
|
mppspst |
|- J C_ ( mPreSt ` T ) |
53 |
|
simprl |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> x e. J ) |
54 |
52 53
|
sselid |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> x e. ( mPreSt ` T ) ) |
55 |
8
|
mpst123 |
|- ( x e. ( mPreSt ` T ) -> x = <. ( 1st ` ( 1st ` x ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. ) |
56 |
54 55
|
syl |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> x = <. ( 1st ` ( 1st ` x ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. ) |
57 |
56
|
fveq2d |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( R ` x ) = ( R ` <. ( 1st ` ( 1st ` x ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. ) ) |
58 |
|
simprr |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( R ` x ) = ( R ` <. C , H , A >. ) ) |
59 |
57 58
|
eqtr3d |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( R ` <. ( 1st ` ( 1st ` x ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. ) = ( R ` <. C , H , A >. ) ) |
60 |
56 54
|
eqeltrrd |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> <. ( 1st ` ( 1st ` x ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. e. ( mPreSt ` T ) ) |
61 |
|
eqid |
|- U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) = U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) |
62 |
5 8 1 61
|
msrval |
|- ( <. ( 1st ` ( 1st ` x ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. e. ( mPreSt ` T ) -> ( R ` <. ( 1st ` ( 1st ` x ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. ) = <. ( ( 1st ` ( 1st ` x ) ) i^i ( U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) X. U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. ) |
63 |
60 62
|
syl |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( R ` <. ( 1st ` ( 1st ` x ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. ) = <. ( ( 1st ` ( 1st ` x ) ) i^i ( U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) X. U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. ) |
64 |
5 8 1 6
|
msrval |
|- ( <. C , H , A >. e. ( mPreSt ` T ) -> ( R ` <. C , H , A >. ) = <. ( C i^i ( Z X. Z ) ) , H , A >. ) |
65 |
11 64
|
syl |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( R ` <. C , H , A >. ) = <. ( C i^i ( Z X. Z ) ) , H , A >. ) |
66 |
65
|
adantr |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( R ` <. C , H , A >. ) = <. ( C i^i ( Z X. Z ) ) , H , A >. ) |
67 |
59 63 66
|
3eqtr3d |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> <. ( ( 1st ` ( 1st ` x ) ) i^i ( U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) X. U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. = <. ( C i^i ( Z X. Z ) ) , H , A >. ) |
68 |
|
fvex |
|- ( 1st ` ( 1st ` x ) ) e. _V |
69 |
68
|
inex1 |
|- ( ( 1st ` ( 1st ` x ) ) i^i ( U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) X. U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) ) ) e. _V |
70 |
|
fvex |
|- ( 2nd ` ( 1st ` x ) ) e. _V |
71 |
|
fvex |
|- ( 2nd ` x ) e. _V |
72 |
69 70 71
|
otth |
|- ( <. ( ( 1st ` ( 1st ` x ) ) i^i ( U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) X. U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. = <. ( C i^i ( Z X. Z ) ) , H , A >. <-> ( ( ( 1st ` ( 1st ` x ) ) i^i ( U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) X. U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) ) ) = ( C i^i ( Z X. Z ) ) /\ ( 2nd ` ( 1st ` x ) ) = H /\ ( 2nd ` x ) = A ) ) |
73 |
67 72
|
sylib |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( ( ( 1st ` ( 1st ` x ) ) i^i ( U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) X. U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) ) ) = ( C i^i ( Z X. Z ) ) /\ ( 2nd ` ( 1st ` x ) ) = H /\ ( 2nd ` x ) = A ) ) |
74 |
73
|
simp1d |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( ( 1st ` ( 1st ` x ) ) i^i ( U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) X. U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) ) ) = ( C i^i ( Z X. Z ) ) ) |
75 |
73
|
simp2d |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( 2nd ` ( 1st ` x ) ) = H ) |
76 |
73
|
simp3d |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( 2nd ` x ) = A ) |
77 |
76
|
sneqd |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> { ( 2nd ` x ) } = { A } ) |
78 |
75 77
|
uneq12d |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) = ( H u. { A } ) ) |
79 |
78
|
imaeq2d |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) = ( V " ( H u. { A } ) ) ) |
80 |
79
|
unieqd |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) = U. ( V " ( H u. { A } ) ) ) |
81 |
80 6
|
eqtr4di |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) = Z ) |
82 |
81
|
sqxpeqd |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) X. U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) ) = ( Z X. Z ) ) |
83 |
82
|
ineq2d |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( ( 1st ` ( 1st ` x ) ) i^i ( U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) X. U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) ) ) = ( ( 1st ` ( 1st ` x ) ) i^i ( Z X. Z ) ) ) |
84 |
74 83
|
eqtr3d |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( C i^i ( Z X. Z ) ) = ( ( 1st ` ( 1st ` x ) ) i^i ( Z X. Z ) ) ) |
85 |
|
inss1 |
|- ( C i^i ( Z X. Z ) ) C_ C |
86 |
84 85
|
eqsstrrdi |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( ( 1st ` ( 1st ` x ) ) i^i ( Z X. Z ) ) C_ C ) |
87 |
|
eqidd |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( 1st ` ( 1st ` x ) ) = ( 1st ` ( 1st ` x ) ) ) |
88 |
87 75 76
|
oteq123d |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> <. ( 1st ` ( 1st ` x ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. = <. ( 1st ` ( 1st ` x ) ) , H , A >. ) |
89 |
56 88
|
eqtrd |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> x = <. ( 1st ` ( 1st ` x ) ) , H , A >. ) |
90 |
89 54
|
eqeltrrd |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> <. ( 1st ` ( 1st ` x ) ) , H , A >. e. ( mPreSt ` T ) ) |
91 |
4 12 8
|
elmpst |
|- ( <. ( 1st ` ( 1st ` x ) ) , H , A >. e. ( mPreSt ` T ) <-> ( ( ( 1st ` ( 1st ` x ) ) C_ D /\ `' ( 1st ` ( 1st ` x ) ) = ( 1st ` ( 1st ` x ) ) ) /\ ( H C_ ( mEx ` T ) /\ H e. Fin ) /\ A e. ( mEx ` T ) ) ) |
92 |
91
|
simp1bi |
|- ( <. ( 1st ` ( 1st ` x ) ) , H , A >. e. ( mPreSt ` T ) -> ( ( 1st ` ( 1st ` x ) ) C_ D /\ `' ( 1st ` ( 1st ` x ) ) = ( 1st ` ( 1st ` x ) ) ) ) |
93 |
92
|
simpld |
|- ( <. ( 1st ` ( 1st ` x ) ) , H , A >. e. ( mPreSt ` T ) -> ( 1st ` ( 1st ` x ) ) C_ D ) |
94 |
90 93
|
syl |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( 1st ` ( 1st ` x ) ) C_ D ) |
95 |
94
|
ssdifd |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( ( 1st ` ( 1st ` x ) ) \ ( Z X. Z ) ) C_ ( D \ ( Z X. Z ) ) ) |
96 |
|
unss12 |
|- ( ( ( ( 1st ` ( 1st ` x ) ) i^i ( Z X. Z ) ) C_ C /\ ( ( 1st ` ( 1st ` x ) ) \ ( Z X. Z ) ) C_ ( D \ ( Z X. Z ) ) ) -> ( ( ( 1st ` ( 1st ` x ) ) i^i ( Z X. Z ) ) u. ( ( 1st ` ( 1st ` x ) ) \ ( Z X. Z ) ) ) C_ ( C u. ( D \ ( Z X. Z ) ) ) ) |
97 |
86 95 96
|
syl2anc |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( ( ( 1st ` ( 1st ` x ) ) i^i ( Z X. Z ) ) u. ( ( 1st ` ( 1st ` x ) ) \ ( Z X. Z ) ) ) C_ ( C u. ( D \ ( Z X. Z ) ) ) ) |
98 |
|
inundif |
|- ( ( ( 1st ` ( 1st ` x ) ) i^i ( Z X. Z ) ) u. ( ( 1st ` ( 1st ` x ) ) \ ( Z X. Z ) ) ) = ( 1st ` ( 1st ` x ) ) |
99 |
98
|
eqcomi |
|- ( 1st ` ( 1st ` x ) ) = ( ( ( 1st ` ( 1st ` x ) ) i^i ( Z X. Z ) ) u. ( ( 1st ` ( 1st ` x ) ) \ ( Z X. Z ) ) ) |
100 |
97 99 7
|
3sstr4g |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( 1st ` ( 1st ` x ) ) C_ M ) |
101 |
|
ssidd |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> H C_ H ) |
102 |
4 12 47 48 49 51 100 101
|
ss2mcls |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( ( 1st ` ( 1st ` x ) ) ( mCls ` T ) H ) C_ ( M ( mCls ` T ) H ) ) |
103 |
89 53
|
eqeltrrd |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> <. ( 1st ` ( 1st ` x ) ) , H , A >. e. J ) |
104 |
8 2 47
|
elmpps |
|- ( <. ( 1st ` ( 1st ` x ) ) , H , A >. e. J <-> ( <. ( 1st ` ( 1st ` x ) ) , H , A >. e. ( mPreSt ` T ) /\ A e. ( ( 1st ` ( 1st ` x ) ) ( mCls ` T ) H ) ) ) |
105 |
104
|
simprbi |
|- ( <. ( 1st ` ( 1st ` x ) ) , H , A >. e. J -> A e. ( ( 1st ` ( 1st ` x ) ) ( mCls ` T ) H ) ) |
106 |
103 105
|
syl |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> A e. ( ( 1st ` ( 1st ` x ) ) ( mCls ` T ) H ) ) |
107 |
102 106
|
sseldd |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> A e. ( M ( mCls ` T ) H ) ) |
108 |
46 107
|
rexlimddv |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> A e. ( M ( mCls ` T ) H ) ) |
109 |
8 2 47
|
elmpps |
|- ( <. M , H , A >. e. J <-> ( <. M , H , A >. e. ( mPreSt ` T ) /\ A e. ( M ( mCls ` T ) H ) ) ) |
110 |
44 108 109
|
sylanbrc |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> <. M , H , A >. e. J ) |
111 |
7
|
ineq1i |
|- ( M i^i ( Z X. Z ) ) = ( ( C u. ( D \ ( Z X. Z ) ) ) i^i ( Z X. Z ) ) |
112 |
|
indir |
|- ( ( C u. ( D \ ( Z X. Z ) ) ) i^i ( Z X. Z ) ) = ( ( C i^i ( Z X. Z ) ) u. ( ( D \ ( Z X. Z ) ) i^i ( Z X. Z ) ) ) |
113 |
|
disjdifr |
|- ( ( D \ ( Z X. Z ) ) i^i ( Z X. Z ) ) = (/) |
114 |
|
0ss |
|- (/) C_ ( C i^i ( Z X. Z ) ) |
115 |
113 114
|
eqsstri |
|- ( ( D \ ( Z X. Z ) ) i^i ( Z X. Z ) ) C_ ( C i^i ( Z X. Z ) ) |
116 |
|
ssequn2 |
|- ( ( ( D \ ( Z X. Z ) ) i^i ( Z X. Z ) ) C_ ( C i^i ( Z X. Z ) ) <-> ( ( C i^i ( Z X. Z ) ) u. ( ( D \ ( Z X. Z ) ) i^i ( Z X. Z ) ) ) = ( C i^i ( Z X. Z ) ) ) |
117 |
115 116
|
mpbi |
|- ( ( C i^i ( Z X. Z ) ) u. ( ( D \ ( Z X. Z ) ) i^i ( Z X. Z ) ) ) = ( C i^i ( Z X. Z ) ) |
118 |
111 112 117
|
3eqtri |
|- ( M i^i ( Z X. Z ) ) = ( C i^i ( Z X. Z ) ) |
119 |
118
|
a1i |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( M i^i ( Z X. Z ) ) = ( C i^i ( Z X. Z ) ) ) |
120 |
119
|
oteq1d |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> <. ( M i^i ( Z X. Z ) ) , H , A >. = <. ( C i^i ( Z X. Z ) ) , H , A >. ) |
121 |
5 8 1 6
|
msrval |
|- ( <. M , H , A >. e. ( mPreSt ` T ) -> ( R ` <. M , H , A >. ) = <. ( M i^i ( Z X. Z ) ) , H , A >. ) |
122 |
44 121
|
syl |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( R ` <. M , H , A >. ) = <. ( M i^i ( Z X. Z ) ) , H , A >. ) |
123 |
120 122 65
|
3eqtr4d |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( R ` <. M , H , A >. ) = ( R ` <. C , H , A >. ) ) |
124 |
110 123
|
jca |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( <. M , H , A >. e. J /\ ( R ` <. M , H , A >. ) = ( R ` <. C , H , A >. ) ) ) |
125 |
124
|
ex |
|- ( T e. mFS -> ( <. C , H , A >. e. U -> ( <. M , H , A >. e. J /\ ( R ` <. M , H , A >. ) = ( R ` <. C , H , A >. ) ) ) ) |
126 |
1 2 3
|
mthmi |
|- ( ( <. M , H , A >. e. J /\ ( R ` <. M , H , A >. ) = ( R ` <. C , H , A >. ) ) -> <. C , H , A >. e. U ) |
127 |
125 126
|
impbid1 |
|- ( T e. mFS -> ( <. C , H , A >. e. U <-> ( <. M , H , A >. e. J /\ ( R ` <. M , H , A >. ) = ( R ` <. C , H , A >. ) ) ) ) |