| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mthmpps.r |
|- R = ( mStRed ` T ) |
| 2 |
|
mthmpps.j |
|- J = ( mPPSt ` T ) |
| 3 |
|
mthmpps.u |
|- U = ( mThm ` T ) |
| 4 |
|
mthmpps.d |
|- D = ( mDV ` T ) |
| 5 |
|
mthmpps.v |
|- V = ( mVars ` T ) |
| 6 |
|
mthmpps.z |
|- Z = U. ( V " ( H u. { A } ) ) |
| 7 |
|
mthmpps.m |
|- M = ( C u. ( D \ ( Z X. Z ) ) ) |
| 8 |
|
eqid |
|- ( mPreSt ` T ) = ( mPreSt ` T ) |
| 9 |
3 8
|
mthmsta |
|- U C_ ( mPreSt ` T ) |
| 10 |
|
simpr |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> <. C , H , A >. e. U ) |
| 11 |
9 10
|
sselid |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> <. C , H , A >. e. ( mPreSt ` T ) ) |
| 12 |
|
eqid |
|- ( mEx ` T ) = ( mEx ` T ) |
| 13 |
4 12 8
|
elmpst |
|- ( <. C , H , A >. e. ( mPreSt ` T ) <-> ( ( C C_ D /\ `' C = C ) /\ ( H C_ ( mEx ` T ) /\ H e. Fin ) /\ A e. ( mEx ` T ) ) ) |
| 14 |
11 13
|
sylib |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( ( C C_ D /\ `' C = C ) /\ ( H C_ ( mEx ` T ) /\ H e. Fin ) /\ A e. ( mEx ` T ) ) ) |
| 15 |
14
|
simp1d |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( C C_ D /\ `' C = C ) ) |
| 16 |
15
|
simpld |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> C C_ D ) |
| 17 |
|
difssd |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( D \ ( Z X. Z ) ) C_ D ) |
| 18 |
16 17
|
unssd |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( C u. ( D \ ( Z X. Z ) ) ) C_ D ) |
| 19 |
7 18
|
eqsstrid |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> M C_ D ) |
| 20 |
15
|
simprd |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> `' C = C ) |
| 21 |
|
cnvdif |
|- `' ( D \ ( Z X. Z ) ) = ( `' D \ `' ( Z X. Z ) ) |
| 22 |
|
cnvdif |
|- `' ( ( ( mVR ` T ) X. ( mVR ` T ) ) \ _I ) = ( `' ( ( mVR ` T ) X. ( mVR ` T ) ) \ `' _I ) |
| 23 |
|
cnvxp |
|- `' ( ( mVR ` T ) X. ( mVR ` T ) ) = ( ( mVR ` T ) X. ( mVR ` T ) ) |
| 24 |
|
cnvi |
|- `' _I = _I |
| 25 |
23 24
|
difeq12i |
|- ( `' ( ( mVR ` T ) X. ( mVR ` T ) ) \ `' _I ) = ( ( ( mVR ` T ) X. ( mVR ` T ) ) \ _I ) |
| 26 |
22 25
|
eqtri |
|- `' ( ( ( mVR ` T ) X. ( mVR ` T ) ) \ _I ) = ( ( ( mVR ` T ) X. ( mVR ` T ) ) \ _I ) |
| 27 |
|
eqid |
|- ( mVR ` T ) = ( mVR ` T ) |
| 28 |
27 4
|
mdvval |
|- D = ( ( ( mVR ` T ) X. ( mVR ` T ) ) \ _I ) |
| 29 |
28
|
cnveqi |
|- `' D = `' ( ( ( mVR ` T ) X. ( mVR ` T ) ) \ _I ) |
| 30 |
26 29 28
|
3eqtr4i |
|- `' D = D |
| 31 |
|
cnvxp |
|- `' ( Z X. Z ) = ( Z X. Z ) |
| 32 |
30 31
|
difeq12i |
|- ( `' D \ `' ( Z X. Z ) ) = ( D \ ( Z X. Z ) ) |
| 33 |
21 32
|
eqtri |
|- `' ( D \ ( Z X. Z ) ) = ( D \ ( Z X. Z ) ) |
| 34 |
33
|
a1i |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> `' ( D \ ( Z X. Z ) ) = ( D \ ( Z X. Z ) ) ) |
| 35 |
20 34
|
uneq12d |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( `' C u. `' ( D \ ( Z X. Z ) ) ) = ( C u. ( D \ ( Z X. Z ) ) ) ) |
| 36 |
7
|
cnveqi |
|- `' M = `' ( C u. ( D \ ( Z X. Z ) ) ) |
| 37 |
|
cnvun |
|- `' ( C u. ( D \ ( Z X. Z ) ) ) = ( `' C u. `' ( D \ ( Z X. Z ) ) ) |
| 38 |
36 37
|
eqtri |
|- `' M = ( `' C u. `' ( D \ ( Z X. Z ) ) ) |
| 39 |
35 38 7
|
3eqtr4g |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> `' M = M ) |
| 40 |
19 39
|
jca |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( M C_ D /\ `' M = M ) ) |
| 41 |
14
|
simp2d |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( H C_ ( mEx ` T ) /\ H e. Fin ) ) |
| 42 |
14
|
simp3d |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> A e. ( mEx ` T ) ) |
| 43 |
4 12 8
|
elmpst |
|- ( <. M , H , A >. e. ( mPreSt ` T ) <-> ( ( M C_ D /\ `' M = M ) /\ ( H C_ ( mEx ` T ) /\ H e. Fin ) /\ A e. ( mEx ` T ) ) ) |
| 44 |
40 41 42 43
|
syl3anbrc |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> <. M , H , A >. e. ( mPreSt ` T ) ) |
| 45 |
1 2 3
|
elmthm |
|- ( <. C , H , A >. e. U <-> E. x e. J ( R ` x ) = ( R ` <. C , H , A >. ) ) |
| 46 |
10 45
|
sylib |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> E. x e. J ( R ` x ) = ( R ` <. C , H , A >. ) ) |
| 47 |
|
eqid |
|- ( mCls ` T ) = ( mCls ` T ) |
| 48 |
|
simpll |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> T e. mFS ) |
| 49 |
19
|
adantr |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> M C_ D ) |
| 50 |
41
|
simpld |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> H C_ ( mEx ` T ) ) |
| 51 |
50
|
adantr |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> H C_ ( mEx ` T ) ) |
| 52 |
8 2
|
mppspst |
|- J C_ ( mPreSt ` T ) |
| 53 |
|
simprl |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> x e. J ) |
| 54 |
52 53
|
sselid |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> x e. ( mPreSt ` T ) ) |
| 55 |
8
|
mpst123 |
|- ( x e. ( mPreSt ` T ) -> x = <. ( 1st ` ( 1st ` x ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. ) |
| 56 |
54 55
|
syl |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> x = <. ( 1st ` ( 1st ` x ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. ) |
| 57 |
56
|
fveq2d |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( R ` x ) = ( R ` <. ( 1st ` ( 1st ` x ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. ) ) |
| 58 |
|
simprr |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( R ` x ) = ( R ` <. C , H , A >. ) ) |
| 59 |
57 58
|
eqtr3d |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( R ` <. ( 1st ` ( 1st ` x ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. ) = ( R ` <. C , H , A >. ) ) |
| 60 |
56 54
|
eqeltrrd |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> <. ( 1st ` ( 1st ` x ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. e. ( mPreSt ` T ) ) |
| 61 |
|
eqid |
|- U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) = U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) |
| 62 |
5 8 1 61
|
msrval |
|- ( <. ( 1st ` ( 1st ` x ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. e. ( mPreSt ` T ) -> ( R ` <. ( 1st ` ( 1st ` x ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. ) = <. ( ( 1st ` ( 1st ` x ) ) i^i ( U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) X. U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. ) |
| 63 |
60 62
|
syl |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( R ` <. ( 1st ` ( 1st ` x ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. ) = <. ( ( 1st ` ( 1st ` x ) ) i^i ( U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) X. U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. ) |
| 64 |
5 8 1 6
|
msrval |
|- ( <. C , H , A >. e. ( mPreSt ` T ) -> ( R ` <. C , H , A >. ) = <. ( C i^i ( Z X. Z ) ) , H , A >. ) |
| 65 |
11 64
|
syl |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( R ` <. C , H , A >. ) = <. ( C i^i ( Z X. Z ) ) , H , A >. ) |
| 66 |
65
|
adantr |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( R ` <. C , H , A >. ) = <. ( C i^i ( Z X. Z ) ) , H , A >. ) |
| 67 |
59 63 66
|
3eqtr3d |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> <. ( ( 1st ` ( 1st ` x ) ) i^i ( U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) X. U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. = <. ( C i^i ( Z X. Z ) ) , H , A >. ) |
| 68 |
|
fvex |
|- ( 1st ` ( 1st ` x ) ) e. _V |
| 69 |
68
|
inex1 |
|- ( ( 1st ` ( 1st ` x ) ) i^i ( U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) X. U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) ) ) e. _V |
| 70 |
|
fvex |
|- ( 2nd ` ( 1st ` x ) ) e. _V |
| 71 |
|
fvex |
|- ( 2nd ` x ) e. _V |
| 72 |
69 70 71
|
otth |
|- ( <. ( ( 1st ` ( 1st ` x ) ) i^i ( U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) X. U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. = <. ( C i^i ( Z X. Z ) ) , H , A >. <-> ( ( ( 1st ` ( 1st ` x ) ) i^i ( U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) X. U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) ) ) = ( C i^i ( Z X. Z ) ) /\ ( 2nd ` ( 1st ` x ) ) = H /\ ( 2nd ` x ) = A ) ) |
| 73 |
67 72
|
sylib |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( ( ( 1st ` ( 1st ` x ) ) i^i ( U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) X. U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) ) ) = ( C i^i ( Z X. Z ) ) /\ ( 2nd ` ( 1st ` x ) ) = H /\ ( 2nd ` x ) = A ) ) |
| 74 |
73
|
simp1d |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( ( 1st ` ( 1st ` x ) ) i^i ( U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) X. U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) ) ) = ( C i^i ( Z X. Z ) ) ) |
| 75 |
73
|
simp2d |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( 2nd ` ( 1st ` x ) ) = H ) |
| 76 |
73
|
simp3d |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( 2nd ` x ) = A ) |
| 77 |
76
|
sneqd |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> { ( 2nd ` x ) } = { A } ) |
| 78 |
75 77
|
uneq12d |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) = ( H u. { A } ) ) |
| 79 |
78
|
imaeq2d |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) = ( V " ( H u. { A } ) ) ) |
| 80 |
79
|
unieqd |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) = U. ( V " ( H u. { A } ) ) ) |
| 81 |
80 6
|
eqtr4di |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) = Z ) |
| 82 |
81
|
sqxpeqd |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) X. U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) ) = ( Z X. Z ) ) |
| 83 |
82
|
ineq2d |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( ( 1st ` ( 1st ` x ) ) i^i ( U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) X. U. ( V " ( ( 2nd ` ( 1st ` x ) ) u. { ( 2nd ` x ) } ) ) ) ) = ( ( 1st ` ( 1st ` x ) ) i^i ( Z X. Z ) ) ) |
| 84 |
74 83
|
eqtr3d |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( C i^i ( Z X. Z ) ) = ( ( 1st ` ( 1st ` x ) ) i^i ( Z X. Z ) ) ) |
| 85 |
|
inss1 |
|- ( C i^i ( Z X. Z ) ) C_ C |
| 86 |
84 85
|
eqsstrrdi |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( ( 1st ` ( 1st ` x ) ) i^i ( Z X. Z ) ) C_ C ) |
| 87 |
|
eqidd |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( 1st ` ( 1st ` x ) ) = ( 1st ` ( 1st ` x ) ) ) |
| 88 |
87 75 76
|
oteq123d |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> <. ( 1st ` ( 1st ` x ) ) , ( 2nd ` ( 1st ` x ) ) , ( 2nd ` x ) >. = <. ( 1st ` ( 1st ` x ) ) , H , A >. ) |
| 89 |
56 88
|
eqtrd |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> x = <. ( 1st ` ( 1st ` x ) ) , H , A >. ) |
| 90 |
89 54
|
eqeltrrd |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> <. ( 1st ` ( 1st ` x ) ) , H , A >. e. ( mPreSt ` T ) ) |
| 91 |
4 12 8
|
elmpst |
|- ( <. ( 1st ` ( 1st ` x ) ) , H , A >. e. ( mPreSt ` T ) <-> ( ( ( 1st ` ( 1st ` x ) ) C_ D /\ `' ( 1st ` ( 1st ` x ) ) = ( 1st ` ( 1st ` x ) ) ) /\ ( H C_ ( mEx ` T ) /\ H e. Fin ) /\ A e. ( mEx ` T ) ) ) |
| 92 |
91
|
simp1bi |
|- ( <. ( 1st ` ( 1st ` x ) ) , H , A >. e. ( mPreSt ` T ) -> ( ( 1st ` ( 1st ` x ) ) C_ D /\ `' ( 1st ` ( 1st ` x ) ) = ( 1st ` ( 1st ` x ) ) ) ) |
| 93 |
92
|
simpld |
|- ( <. ( 1st ` ( 1st ` x ) ) , H , A >. e. ( mPreSt ` T ) -> ( 1st ` ( 1st ` x ) ) C_ D ) |
| 94 |
90 93
|
syl |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( 1st ` ( 1st ` x ) ) C_ D ) |
| 95 |
94
|
ssdifd |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( ( 1st ` ( 1st ` x ) ) \ ( Z X. Z ) ) C_ ( D \ ( Z X. Z ) ) ) |
| 96 |
|
unss12 |
|- ( ( ( ( 1st ` ( 1st ` x ) ) i^i ( Z X. Z ) ) C_ C /\ ( ( 1st ` ( 1st ` x ) ) \ ( Z X. Z ) ) C_ ( D \ ( Z X. Z ) ) ) -> ( ( ( 1st ` ( 1st ` x ) ) i^i ( Z X. Z ) ) u. ( ( 1st ` ( 1st ` x ) ) \ ( Z X. Z ) ) ) C_ ( C u. ( D \ ( Z X. Z ) ) ) ) |
| 97 |
86 95 96
|
syl2anc |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( ( ( 1st ` ( 1st ` x ) ) i^i ( Z X. Z ) ) u. ( ( 1st ` ( 1st ` x ) ) \ ( Z X. Z ) ) ) C_ ( C u. ( D \ ( Z X. Z ) ) ) ) |
| 98 |
|
inundif |
|- ( ( ( 1st ` ( 1st ` x ) ) i^i ( Z X. Z ) ) u. ( ( 1st ` ( 1st ` x ) ) \ ( Z X. Z ) ) ) = ( 1st ` ( 1st ` x ) ) |
| 99 |
98
|
eqcomi |
|- ( 1st ` ( 1st ` x ) ) = ( ( ( 1st ` ( 1st ` x ) ) i^i ( Z X. Z ) ) u. ( ( 1st ` ( 1st ` x ) ) \ ( Z X. Z ) ) ) |
| 100 |
97 99 7
|
3sstr4g |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( 1st ` ( 1st ` x ) ) C_ M ) |
| 101 |
|
ssidd |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> H C_ H ) |
| 102 |
4 12 47 48 49 51 100 101
|
ss2mcls |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> ( ( 1st ` ( 1st ` x ) ) ( mCls ` T ) H ) C_ ( M ( mCls ` T ) H ) ) |
| 103 |
89 53
|
eqeltrrd |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> <. ( 1st ` ( 1st ` x ) ) , H , A >. e. J ) |
| 104 |
8 2 47
|
elmpps |
|- ( <. ( 1st ` ( 1st ` x ) ) , H , A >. e. J <-> ( <. ( 1st ` ( 1st ` x ) ) , H , A >. e. ( mPreSt ` T ) /\ A e. ( ( 1st ` ( 1st ` x ) ) ( mCls ` T ) H ) ) ) |
| 105 |
104
|
simprbi |
|- ( <. ( 1st ` ( 1st ` x ) ) , H , A >. e. J -> A e. ( ( 1st ` ( 1st ` x ) ) ( mCls ` T ) H ) ) |
| 106 |
103 105
|
syl |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> A e. ( ( 1st ` ( 1st ` x ) ) ( mCls ` T ) H ) ) |
| 107 |
102 106
|
sseldd |
|- ( ( ( T e. mFS /\ <. C , H , A >. e. U ) /\ ( x e. J /\ ( R ` x ) = ( R ` <. C , H , A >. ) ) ) -> A e. ( M ( mCls ` T ) H ) ) |
| 108 |
46 107
|
rexlimddv |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> A e. ( M ( mCls ` T ) H ) ) |
| 109 |
8 2 47
|
elmpps |
|- ( <. M , H , A >. e. J <-> ( <. M , H , A >. e. ( mPreSt ` T ) /\ A e. ( M ( mCls ` T ) H ) ) ) |
| 110 |
44 108 109
|
sylanbrc |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> <. M , H , A >. e. J ) |
| 111 |
7
|
ineq1i |
|- ( M i^i ( Z X. Z ) ) = ( ( C u. ( D \ ( Z X. Z ) ) ) i^i ( Z X. Z ) ) |
| 112 |
|
indir |
|- ( ( C u. ( D \ ( Z X. Z ) ) ) i^i ( Z X. Z ) ) = ( ( C i^i ( Z X. Z ) ) u. ( ( D \ ( Z X. Z ) ) i^i ( Z X. Z ) ) ) |
| 113 |
|
disjdifr |
|- ( ( D \ ( Z X. Z ) ) i^i ( Z X. Z ) ) = (/) |
| 114 |
|
0ss |
|- (/) C_ ( C i^i ( Z X. Z ) ) |
| 115 |
113 114
|
eqsstri |
|- ( ( D \ ( Z X. Z ) ) i^i ( Z X. Z ) ) C_ ( C i^i ( Z X. Z ) ) |
| 116 |
|
ssequn2 |
|- ( ( ( D \ ( Z X. Z ) ) i^i ( Z X. Z ) ) C_ ( C i^i ( Z X. Z ) ) <-> ( ( C i^i ( Z X. Z ) ) u. ( ( D \ ( Z X. Z ) ) i^i ( Z X. Z ) ) ) = ( C i^i ( Z X. Z ) ) ) |
| 117 |
115 116
|
mpbi |
|- ( ( C i^i ( Z X. Z ) ) u. ( ( D \ ( Z X. Z ) ) i^i ( Z X. Z ) ) ) = ( C i^i ( Z X. Z ) ) |
| 118 |
111 112 117
|
3eqtri |
|- ( M i^i ( Z X. Z ) ) = ( C i^i ( Z X. Z ) ) |
| 119 |
118
|
a1i |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( M i^i ( Z X. Z ) ) = ( C i^i ( Z X. Z ) ) ) |
| 120 |
119
|
oteq1d |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> <. ( M i^i ( Z X. Z ) ) , H , A >. = <. ( C i^i ( Z X. Z ) ) , H , A >. ) |
| 121 |
5 8 1 6
|
msrval |
|- ( <. M , H , A >. e. ( mPreSt ` T ) -> ( R ` <. M , H , A >. ) = <. ( M i^i ( Z X. Z ) ) , H , A >. ) |
| 122 |
44 121
|
syl |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( R ` <. M , H , A >. ) = <. ( M i^i ( Z X. Z ) ) , H , A >. ) |
| 123 |
120 122 65
|
3eqtr4d |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( R ` <. M , H , A >. ) = ( R ` <. C , H , A >. ) ) |
| 124 |
110 123
|
jca |
|- ( ( T e. mFS /\ <. C , H , A >. e. U ) -> ( <. M , H , A >. e. J /\ ( R ` <. M , H , A >. ) = ( R ` <. C , H , A >. ) ) ) |
| 125 |
124
|
ex |
|- ( T e. mFS -> ( <. C , H , A >. e. U -> ( <. M , H , A >. e. J /\ ( R ` <. M , H , A >. ) = ( R ` <. C , H , A >. ) ) ) ) |
| 126 |
1 2 3
|
mthmi |
|- ( ( <. M , H , A >. e. J /\ ( R ` <. M , H , A >. ) = ( R ` <. C , H , A >. ) ) -> <. C , H , A >. e. U ) |
| 127 |
125 126
|
impbid1 |
|- ( T e. mFS -> ( <. C , H , A >. e. U <-> ( <. M , H , A >. e. J /\ ( R ` <. M , H , A >. ) = ( R ` <. C , H , A >. ) ) ) ) |