Step |
Hyp |
Ref |
Expression |
1 |
|
mclsval.d |
|- D = ( mDV ` T ) |
2 |
|
mclsval.e |
|- E = ( mEx ` T ) |
3 |
|
mclsval.c |
|- C = ( mCls ` T ) |
4 |
|
mclsval.1 |
|- ( ph -> T e. mFS ) |
5 |
|
mclsval.2 |
|- ( ph -> K C_ D ) |
6 |
|
mclsval.3 |
|- ( ph -> B C_ E ) |
7 |
|
ss2mcls.4 |
|- ( ph -> X C_ K ) |
8 |
|
ss2mcls.5 |
|- ( ph -> Y C_ B ) |
9 |
|
unss1 |
|- ( Y C_ B -> ( Y u. ran ( mVH ` T ) ) C_ ( B u. ran ( mVH ` T ) ) ) |
10 |
|
sstr2 |
|- ( ( Y u. ran ( mVH ` T ) ) C_ ( B u. ran ( mVH ` T ) ) -> ( ( B u. ran ( mVH ` T ) ) C_ c -> ( Y u. ran ( mVH ` T ) ) C_ c ) ) |
11 |
8 9 10
|
3syl |
|- ( ph -> ( ( B u. ran ( mVH ` T ) ) C_ c -> ( Y u. ran ( mVH ` T ) ) C_ c ) ) |
12 |
|
sstr2 |
|- ( ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ X -> ( X C_ K -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ K ) ) |
13 |
7 12
|
syl5com |
|- ( ph -> ( ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ X -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ K ) ) |
14 |
13
|
imim2d |
|- ( ph -> ( ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ X ) -> ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ K ) ) ) |
15 |
14
|
2alimdv |
|- ( ph -> ( A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ X ) -> A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ K ) ) ) |
16 |
15
|
anim2d |
|- ( ph -> ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ X ) ) -> ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ K ) ) ) ) |
17 |
16
|
imim1d |
|- ( ph -> ( ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ K ) ) -> ( s ` p ) e. c ) -> ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ X ) ) -> ( s ` p ) e. c ) ) ) |
18 |
17
|
ralimdv |
|- ( ph -> ( A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ K ) ) -> ( s ` p ) e. c ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ X ) ) -> ( s ` p ) e. c ) ) ) |
19 |
18
|
imim2d |
|- ( ph -> ( ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ K ) ) -> ( s ` p ) e. c ) ) -> ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ X ) ) -> ( s ` p ) e. c ) ) ) ) |
20 |
19
|
alimdv |
|- ( ph -> ( A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ K ) ) -> ( s ` p ) e. c ) ) -> A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ X ) ) -> ( s ` p ) e. c ) ) ) ) |
21 |
20
|
2alimdv |
|- ( ph -> ( A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ K ) ) -> ( s ` p ) e. c ) ) -> A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ X ) ) -> ( s ` p ) e. c ) ) ) ) |
22 |
11 21
|
anim12d |
|- ( ph -> ( ( ( B u. ran ( mVH ` T ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ K ) ) -> ( s ` p ) e. c ) ) ) -> ( ( Y u. ran ( mVH ` T ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ X ) ) -> ( s ` p ) e. c ) ) ) ) ) |
23 |
22
|
ss2abdv |
|- ( ph -> { c | ( ( B u. ran ( mVH ` T ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ K ) ) -> ( s ` p ) e. c ) ) ) } C_ { c | ( ( Y u. ran ( mVH ` T ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ X ) ) -> ( s ` p ) e. c ) ) ) } ) |
24 |
|
intss |
|- ( { c | ( ( B u. ran ( mVH ` T ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ K ) ) -> ( s ` p ) e. c ) ) ) } C_ { c | ( ( Y u. ran ( mVH ` T ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ X ) ) -> ( s ` p ) e. c ) ) ) } -> |^| { c | ( ( Y u. ran ( mVH ` T ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ X ) ) -> ( s ` p ) e. c ) ) ) } C_ |^| { c | ( ( B u. ran ( mVH ` T ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ K ) ) -> ( s ` p ) e. c ) ) ) } ) |
25 |
23 24
|
syl |
|- ( ph -> |^| { c | ( ( Y u. ran ( mVH ` T ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ X ) ) -> ( s ` p ) e. c ) ) ) } C_ |^| { c | ( ( B u. ran ( mVH ` T ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ K ) ) -> ( s ` p ) e. c ) ) ) } ) |
26 |
7 5
|
sstrd |
|- ( ph -> X C_ D ) |
27 |
8 6
|
sstrd |
|- ( ph -> Y C_ E ) |
28 |
|
eqid |
|- ( mVH ` T ) = ( mVH ` T ) |
29 |
|
eqid |
|- ( mAx ` T ) = ( mAx ` T ) |
30 |
|
eqid |
|- ( mSubst ` T ) = ( mSubst ` T ) |
31 |
|
eqid |
|- ( mVars ` T ) = ( mVars ` T ) |
32 |
1 2 3 4 26 27 28 29 30 31
|
mclsval |
|- ( ph -> ( X C Y ) = |^| { c | ( ( Y u. ran ( mVH ` T ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ X ) ) -> ( s ` p ) e. c ) ) ) } ) |
33 |
1 2 3 4 5 6 28 29 30 31
|
mclsval |
|- ( ph -> ( K C B ) = |^| { c | ( ( B u. ran ( mVH ` T ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ K ) ) -> ( s ` p ) e. c ) ) ) } ) |
34 |
25 32 33
|
3sstr4d |
|- ( ph -> ( X C Y ) C_ ( K C B ) ) |