Step |
Hyp |
Ref |
Expression |
1 |
|
mclspps.d |
|- D = ( mDV ` T ) |
2 |
|
mclspps.e |
|- E = ( mEx ` T ) |
3 |
|
mclspps.c |
|- C = ( mCls ` T ) |
4 |
|
mclspps.1 |
|- ( ph -> T e. mFS ) |
5 |
|
mclspps.2 |
|- ( ph -> K C_ D ) |
6 |
|
mclspps.3 |
|- ( ph -> B C_ E ) |
7 |
|
mclspps.j |
|- J = ( mPPSt ` T ) |
8 |
|
mclspps.l |
|- L = ( mSubst ` T ) |
9 |
|
mclspps.v |
|- V = ( mVR ` T ) |
10 |
|
mclspps.h |
|- H = ( mVH ` T ) |
11 |
|
mclspps.w |
|- W = ( mVars ` T ) |
12 |
|
mclspps.4 |
|- ( ph -> <. M , O , P >. e. J ) |
13 |
|
mclspps.5 |
|- ( ph -> S e. ran L ) |
14 |
|
mclspps.6 |
|- ( ( ph /\ x e. O ) -> ( S ` x ) e. ( K C B ) ) |
15 |
|
mclspps.7 |
|- ( ( ph /\ v e. V ) -> ( S ` ( H ` v ) ) e. ( K C B ) ) |
16 |
|
mclspps.8 |
|- ( ( ph /\ ( x M y /\ a e. ( W ` ( S ` ( H ` x ) ) ) /\ b e. ( W ` ( S ` ( H ` y ) ) ) ) ) -> a K b ) |
17 |
|
mclsppslem.9 |
|- ( ph -> <. m , o , p >. e. ( mAx ` T ) ) |
18 |
|
mclsppslem.10 |
|- ( ph -> s e. ran L ) |
19 |
|
mclsppslem.11 |
|- ( ph -> ( s " ( o u. ran H ) ) C_ ( `' S " ( K C B ) ) ) |
20 |
|
mclsppslem.12 |
|- ( ph -> A. z A. w ( z m w -> ( ( W ` ( s ` ( H ` z ) ) ) X. ( W ` ( s ` ( H ` w ) ) ) ) C_ M ) ) |
21 |
8 2
|
msubf |
|- ( s e. ran L -> s : E --> E ) |
22 |
18 21
|
syl |
|- ( ph -> s : E --> E ) |
23 |
|
eqid |
|- ( mAx ` T ) = ( mAx ` T ) |
24 |
|
eqid |
|- ( mStat ` T ) = ( mStat ` T ) |
25 |
23 24
|
maxsta |
|- ( T e. mFS -> ( mAx ` T ) C_ ( mStat ` T ) ) |
26 |
4 25
|
syl |
|- ( ph -> ( mAx ` T ) C_ ( mStat ` T ) ) |
27 |
|
eqid |
|- ( mPreSt ` T ) = ( mPreSt ` T ) |
28 |
27 24
|
mstapst |
|- ( mStat ` T ) C_ ( mPreSt ` T ) |
29 |
26 28
|
sstrdi |
|- ( ph -> ( mAx ` T ) C_ ( mPreSt ` T ) ) |
30 |
29 17
|
sseldd |
|- ( ph -> <. m , o , p >. e. ( mPreSt ` T ) ) |
31 |
1 2 27
|
elmpst |
|- ( <. m , o , p >. e. ( mPreSt ` T ) <-> ( ( m C_ D /\ `' m = m ) /\ ( o C_ E /\ o e. Fin ) /\ p e. E ) ) |
32 |
30 31
|
sylib |
|- ( ph -> ( ( m C_ D /\ `' m = m ) /\ ( o C_ E /\ o e. Fin ) /\ p e. E ) ) |
33 |
32
|
simp3d |
|- ( ph -> p e. E ) |
34 |
22 33
|
ffvelrnd |
|- ( ph -> ( s ` p ) e. E ) |
35 |
|
fvco3 |
|- ( ( s : E --> E /\ p e. E ) -> ( ( S o. s ) ` p ) = ( S ` ( s ` p ) ) ) |
36 |
22 33 35
|
syl2anc |
|- ( ph -> ( ( S o. s ) ` p ) = ( S ` ( s ` p ) ) ) |
37 |
8
|
msubco |
|- ( ( S e. ran L /\ s e. ran L ) -> ( S o. s ) e. ran L ) |
38 |
13 18 37
|
syl2anc |
|- ( ph -> ( S o. s ) e. ran L ) |
39 |
8 2
|
msubf |
|- ( S e. ran L -> S : E --> E ) |
40 |
13 39
|
syl |
|- ( ph -> S : E --> E ) |
41 |
|
fco |
|- ( ( S : E --> E /\ s : E --> E ) -> ( S o. s ) : E --> E ) |
42 |
40 22 41
|
syl2anc |
|- ( ph -> ( S o. s ) : E --> E ) |
43 |
42
|
ffnd |
|- ( ph -> ( S o. s ) Fn E ) |
44 |
43
|
adantr |
|- ( ( ph /\ c e. o ) -> ( S o. s ) Fn E ) |
45 |
22
|
ffund |
|- ( ph -> Fun s ) |
46 |
31
|
simp2bi |
|- ( <. m , o , p >. e. ( mPreSt ` T ) -> ( o C_ E /\ o e. Fin ) ) |
47 |
30 46
|
syl |
|- ( ph -> ( o C_ E /\ o e. Fin ) ) |
48 |
47
|
simpld |
|- ( ph -> o C_ E ) |
49 |
9 2 10
|
mvhf |
|- ( T e. mFS -> H : V --> E ) |
50 |
|
frn |
|- ( H : V --> E -> ran H C_ E ) |
51 |
4 49 50
|
3syl |
|- ( ph -> ran H C_ E ) |
52 |
48 51
|
unssd |
|- ( ph -> ( o u. ran H ) C_ E ) |
53 |
22
|
fdmd |
|- ( ph -> dom s = E ) |
54 |
52 53
|
sseqtrrd |
|- ( ph -> ( o u. ran H ) C_ dom s ) |
55 |
|
funimass3 |
|- ( ( Fun s /\ ( o u. ran H ) C_ dom s ) -> ( ( s " ( o u. ran H ) ) C_ ( `' S " ( K C B ) ) <-> ( o u. ran H ) C_ ( `' s " ( `' S " ( K C B ) ) ) ) ) |
56 |
45 54 55
|
syl2anc |
|- ( ph -> ( ( s " ( o u. ran H ) ) C_ ( `' S " ( K C B ) ) <-> ( o u. ran H ) C_ ( `' s " ( `' S " ( K C B ) ) ) ) ) |
57 |
19 56
|
mpbid |
|- ( ph -> ( o u. ran H ) C_ ( `' s " ( `' S " ( K C B ) ) ) ) |
58 |
|
cnvco |
|- `' ( S o. s ) = ( `' s o. `' S ) |
59 |
58
|
imaeq1i |
|- ( `' ( S o. s ) " ( K C B ) ) = ( ( `' s o. `' S ) " ( K C B ) ) |
60 |
|
imaco |
|- ( ( `' s o. `' S ) " ( K C B ) ) = ( `' s " ( `' S " ( K C B ) ) ) |
61 |
59 60
|
eqtri |
|- ( `' ( S o. s ) " ( K C B ) ) = ( `' s " ( `' S " ( K C B ) ) ) |
62 |
57 61
|
sseqtrrdi |
|- ( ph -> ( o u. ran H ) C_ ( `' ( S o. s ) " ( K C B ) ) ) |
63 |
62
|
unssad |
|- ( ph -> o C_ ( `' ( S o. s ) " ( K C B ) ) ) |
64 |
63
|
sselda |
|- ( ( ph /\ c e. o ) -> c e. ( `' ( S o. s ) " ( K C B ) ) ) |
65 |
|
elpreima |
|- ( ( S o. s ) Fn E -> ( c e. ( `' ( S o. s ) " ( K C B ) ) <-> ( c e. E /\ ( ( S o. s ) ` c ) e. ( K C B ) ) ) ) |
66 |
65
|
simplbda |
|- ( ( ( S o. s ) Fn E /\ c e. ( `' ( S o. s ) " ( K C B ) ) ) -> ( ( S o. s ) ` c ) e. ( K C B ) ) |
67 |
44 64 66
|
syl2anc |
|- ( ( ph /\ c e. o ) -> ( ( S o. s ) ` c ) e. ( K C B ) ) |
68 |
43
|
adantr |
|- ( ( ph /\ t e. V ) -> ( S o. s ) Fn E ) |
69 |
62
|
unssbd |
|- ( ph -> ran H C_ ( `' ( S o. s ) " ( K C B ) ) ) |
70 |
69
|
adantr |
|- ( ( ph /\ t e. V ) -> ran H C_ ( `' ( S o. s ) " ( K C B ) ) ) |
71 |
|
ffn |
|- ( H : V --> E -> H Fn V ) |
72 |
4 49 71
|
3syl |
|- ( ph -> H Fn V ) |
73 |
|
fnfvelrn |
|- ( ( H Fn V /\ t e. V ) -> ( H ` t ) e. ran H ) |
74 |
72 73
|
sylan |
|- ( ( ph /\ t e. V ) -> ( H ` t ) e. ran H ) |
75 |
70 74
|
sseldd |
|- ( ( ph /\ t e. V ) -> ( H ` t ) e. ( `' ( S o. s ) " ( K C B ) ) ) |
76 |
|
elpreima |
|- ( ( S o. s ) Fn E -> ( ( H ` t ) e. ( `' ( S o. s ) " ( K C B ) ) <-> ( ( H ` t ) e. E /\ ( ( S o. s ) ` ( H ` t ) ) e. ( K C B ) ) ) ) |
77 |
76
|
simplbda |
|- ( ( ( S o. s ) Fn E /\ ( H ` t ) e. ( `' ( S o. s ) " ( K C B ) ) ) -> ( ( S o. s ) ` ( H ` t ) ) e. ( K C B ) ) |
78 |
68 75 77
|
syl2anc |
|- ( ( ph /\ t e. V ) -> ( ( S o. s ) ` ( H ` t ) ) e. ( K C B ) ) |
79 |
22
|
adantr |
|- ( ( ph /\ c m d ) -> s : E --> E ) |
80 |
4 49
|
syl |
|- ( ph -> H : V --> E ) |
81 |
80
|
adantr |
|- ( ( ph /\ c m d ) -> H : V --> E ) |
82 |
32
|
simp1d |
|- ( ph -> ( m C_ D /\ `' m = m ) ) |
83 |
82
|
simpld |
|- ( ph -> m C_ D ) |
84 |
9 1
|
mdvval |
|- D = ( ( V X. V ) \ _I ) |
85 |
|
difss |
|- ( ( V X. V ) \ _I ) C_ ( V X. V ) |
86 |
84 85
|
eqsstri |
|- D C_ ( V X. V ) |
87 |
83 86
|
sstrdi |
|- ( ph -> m C_ ( V X. V ) ) |
88 |
87
|
ssbrd |
|- ( ph -> ( c m d -> c ( V X. V ) d ) ) |
89 |
88
|
imp |
|- ( ( ph /\ c m d ) -> c ( V X. V ) d ) |
90 |
|
brxp |
|- ( c ( V X. V ) d <-> ( c e. V /\ d e. V ) ) |
91 |
89 90
|
sylib |
|- ( ( ph /\ c m d ) -> ( c e. V /\ d e. V ) ) |
92 |
91
|
simpld |
|- ( ( ph /\ c m d ) -> c e. V ) |
93 |
81 92
|
ffvelrnd |
|- ( ( ph /\ c m d ) -> ( H ` c ) e. E ) |
94 |
|
fvco3 |
|- ( ( s : E --> E /\ ( H ` c ) e. E ) -> ( ( S o. s ) ` ( H ` c ) ) = ( S ` ( s ` ( H ` c ) ) ) ) |
95 |
79 93 94
|
syl2anc |
|- ( ( ph /\ c m d ) -> ( ( S o. s ) ` ( H ` c ) ) = ( S ` ( s ` ( H ` c ) ) ) ) |
96 |
95
|
fveq2d |
|- ( ( ph /\ c m d ) -> ( W ` ( ( S o. s ) ` ( H ` c ) ) ) = ( W ` ( S ` ( s ` ( H ` c ) ) ) ) ) |
97 |
4
|
adantr |
|- ( ( ph /\ c m d ) -> T e. mFS ) |
98 |
13
|
adantr |
|- ( ( ph /\ c m d ) -> S e. ran L ) |
99 |
79 93
|
ffvelrnd |
|- ( ( ph /\ c m d ) -> ( s ` ( H ` c ) ) e. E ) |
100 |
8 2 11 10
|
msubvrs |
|- ( ( T e. mFS /\ S e. ran L /\ ( s ` ( H ` c ) ) e. E ) -> ( W ` ( S ` ( s ` ( H ` c ) ) ) ) = U_ u e. ( W ` ( s ` ( H ` c ) ) ) ( W ` ( S ` ( H ` u ) ) ) ) |
101 |
97 98 99 100
|
syl3anc |
|- ( ( ph /\ c m d ) -> ( W ` ( S ` ( s ` ( H ` c ) ) ) ) = U_ u e. ( W ` ( s ` ( H ` c ) ) ) ( W ` ( S ` ( H ` u ) ) ) ) |
102 |
96 101
|
eqtrd |
|- ( ( ph /\ c m d ) -> ( W ` ( ( S o. s ) ` ( H ` c ) ) ) = U_ u e. ( W ` ( s ` ( H ` c ) ) ) ( W ` ( S ` ( H ` u ) ) ) ) |
103 |
102
|
eleq2d |
|- ( ( ph /\ c m d ) -> ( a e. ( W ` ( ( S o. s ) ` ( H ` c ) ) ) <-> a e. U_ u e. ( W ` ( s ` ( H ` c ) ) ) ( W ` ( S ` ( H ` u ) ) ) ) ) |
104 |
|
eliun |
|- ( a e. U_ u e. ( W ` ( s ` ( H ` c ) ) ) ( W ` ( S ` ( H ` u ) ) ) <-> E. u e. ( W ` ( s ` ( H ` c ) ) ) a e. ( W ` ( S ` ( H ` u ) ) ) ) |
105 |
103 104
|
bitrdi |
|- ( ( ph /\ c m d ) -> ( a e. ( W ` ( ( S o. s ) ` ( H ` c ) ) ) <-> E. u e. ( W ` ( s ` ( H ` c ) ) ) a e. ( W ` ( S ` ( H ` u ) ) ) ) ) |
106 |
91
|
simprd |
|- ( ( ph /\ c m d ) -> d e. V ) |
107 |
81 106
|
ffvelrnd |
|- ( ( ph /\ c m d ) -> ( H ` d ) e. E ) |
108 |
|
fvco3 |
|- ( ( s : E --> E /\ ( H ` d ) e. E ) -> ( ( S o. s ) ` ( H ` d ) ) = ( S ` ( s ` ( H ` d ) ) ) ) |
109 |
79 107 108
|
syl2anc |
|- ( ( ph /\ c m d ) -> ( ( S o. s ) ` ( H ` d ) ) = ( S ` ( s ` ( H ` d ) ) ) ) |
110 |
109
|
fveq2d |
|- ( ( ph /\ c m d ) -> ( W ` ( ( S o. s ) ` ( H ` d ) ) ) = ( W ` ( S ` ( s ` ( H ` d ) ) ) ) ) |
111 |
79 107
|
ffvelrnd |
|- ( ( ph /\ c m d ) -> ( s ` ( H ` d ) ) e. E ) |
112 |
8 2 11 10
|
msubvrs |
|- ( ( T e. mFS /\ S e. ran L /\ ( s ` ( H ` d ) ) e. E ) -> ( W ` ( S ` ( s ` ( H ` d ) ) ) ) = U_ v e. ( W ` ( s ` ( H ` d ) ) ) ( W ` ( S ` ( H ` v ) ) ) ) |
113 |
97 98 111 112
|
syl3anc |
|- ( ( ph /\ c m d ) -> ( W ` ( S ` ( s ` ( H ` d ) ) ) ) = U_ v e. ( W ` ( s ` ( H ` d ) ) ) ( W ` ( S ` ( H ` v ) ) ) ) |
114 |
110 113
|
eqtrd |
|- ( ( ph /\ c m d ) -> ( W ` ( ( S o. s ) ` ( H ` d ) ) ) = U_ v e. ( W ` ( s ` ( H ` d ) ) ) ( W ` ( S ` ( H ` v ) ) ) ) |
115 |
114
|
eleq2d |
|- ( ( ph /\ c m d ) -> ( b e. ( W ` ( ( S o. s ) ` ( H ` d ) ) ) <-> b e. U_ v e. ( W ` ( s ` ( H ` d ) ) ) ( W ` ( S ` ( H ` v ) ) ) ) ) |
116 |
|
eliun |
|- ( b e. U_ v e. ( W ` ( s ` ( H ` d ) ) ) ( W ` ( S ` ( H ` v ) ) ) <-> E. v e. ( W ` ( s ` ( H ` d ) ) ) b e. ( W ` ( S ` ( H ` v ) ) ) ) |
117 |
115 116
|
bitrdi |
|- ( ( ph /\ c m d ) -> ( b e. ( W ` ( ( S o. s ) ` ( H ` d ) ) ) <-> E. v e. ( W ` ( s ` ( H ` d ) ) ) b e. ( W ` ( S ` ( H ` v ) ) ) ) ) |
118 |
105 117
|
anbi12d |
|- ( ( ph /\ c m d ) -> ( ( a e. ( W ` ( ( S o. s ) ` ( H ` c ) ) ) /\ b e. ( W ` ( ( S o. s ) ` ( H ` d ) ) ) ) <-> ( E. u e. ( W ` ( s ` ( H ` c ) ) ) a e. ( W ` ( S ` ( H ` u ) ) ) /\ E. v e. ( W ` ( s ` ( H ` d ) ) ) b e. ( W ` ( S ` ( H ` v ) ) ) ) ) ) |
119 |
|
reeanv |
|- ( E. u e. ( W ` ( s ` ( H ` c ) ) ) E. v e. ( W ` ( s ` ( H ` d ) ) ) ( a e. ( W ` ( S ` ( H ` u ) ) ) /\ b e. ( W ` ( S ` ( H ` v ) ) ) ) <-> ( E. u e. ( W ` ( s ` ( H ` c ) ) ) a e. ( W ` ( S ` ( H ` u ) ) ) /\ E. v e. ( W ` ( s ` ( H ` d ) ) ) b e. ( W ` ( S ` ( H ` v ) ) ) ) ) |
120 |
|
simpll |
|- ( ( ( ph /\ c m d ) /\ ( u e. ( W ` ( s ` ( H ` c ) ) ) /\ v e. ( W ` ( s ` ( H ` d ) ) ) ) ) -> ph ) |
121 |
|
brxp |
|- ( u ( ( W ` ( s ` ( H ` c ) ) ) X. ( W ` ( s ` ( H ` d ) ) ) ) v <-> ( u e. ( W ` ( s ` ( H ` c ) ) ) /\ v e. ( W ` ( s ` ( H ` d ) ) ) ) ) |
122 |
|
breq12 |
|- ( ( z = c /\ w = d ) -> ( z m w <-> c m d ) ) |
123 |
|
simpl |
|- ( ( z = c /\ w = d ) -> z = c ) |
124 |
123
|
fveq2d |
|- ( ( z = c /\ w = d ) -> ( H ` z ) = ( H ` c ) ) |
125 |
124
|
fveq2d |
|- ( ( z = c /\ w = d ) -> ( s ` ( H ` z ) ) = ( s ` ( H ` c ) ) ) |
126 |
125
|
fveq2d |
|- ( ( z = c /\ w = d ) -> ( W ` ( s ` ( H ` z ) ) ) = ( W ` ( s ` ( H ` c ) ) ) ) |
127 |
|
simpr |
|- ( ( z = c /\ w = d ) -> w = d ) |
128 |
127
|
fveq2d |
|- ( ( z = c /\ w = d ) -> ( H ` w ) = ( H ` d ) ) |
129 |
128
|
fveq2d |
|- ( ( z = c /\ w = d ) -> ( s ` ( H ` w ) ) = ( s ` ( H ` d ) ) ) |
130 |
129
|
fveq2d |
|- ( ( z = c /\ w = d ) -> ( W ` ( s ` ( H ` w ) ) ) = ( W ` ( s ` ( H ` d ) ) ) ) |
131 |
126 130
|
xpeq12d |
|- ( ( z = c /\ w = d ) -> ( ( W ` ( s ` ( H ` z ) ) ) X. ( W ` ( s ` ( H ` w ) ) ) ) = ( ( W ` ( s ` ( H ` c ) ) ) X. ( W ` ( s ` ( H ` d ) ) ) ) ) |
132 |
131
|
sseq1d |
|- ( ( z = c /\ w = d ) -> ( ( ( W ` ( s ` ( H ` z ) ) ) X. ( W ` ( s ` ( H ` w ) ) ) ) C_ M <-> ( ( W ` ( s ` ( H ` c ) ) ) X. ( W ` ( s ` ( H ` d ) ) ) ) C_ M ) ) |
133 |
122 132
|
imbi12d |
|- ( ( z = c /\ w = d ) -> ( ( z m w -> ( ( W ` ( s ` ( H ` z ) ) ) X. ( W ` ( s ` ( H ` w ) ) ) ) C_ M ) <-> ( c m d -> ( ( W ` ( s ` ( H ` c ) ) ) X. ( W ` ( s ` ( H ` d ) ) ) ) C_ M ) ) ) |
134 |
133
|
spc2gv |
|- ( ( c e. _V /\ d e. _V ) -> ( A. z A. w ( z m w -> ( ( W ` ( s ` ( H ` z ) ) ) X. ( W ` ( s ` ( H ` w ) ) ) ) C_ M ) -> ( c m d -> ( ( W ` ( s ` ( H ` c ) ) ) X. ( W ` ( s ` ( H ` d ) ) ) ) C_ M ) ) ) |
135 |
134
|
el2v |
|- ( A. z A. w ( z m w -> ( ( W ` ( s ` ( H ` z ) ) ) X. ( W ` ( s ` ( H ` w ) ) ) ) C_ M ) -> ( c m d -> ( ( W ` ( s ` ( H ` c ) ) ) X. ( W ` ( s ` ( H ` d ) ) ) ) C_ M ) ) |
136 |
20 135
|
syl |
|- ( ph -> ( c m d -> ( ( W ` ( s ` ( H ` c ) ) ) X. ( W ` ( s ` ( H ` d ) ) ) ) C_ M ) ) |
137 |
136
|
imp |
|- ( ( ph /\ c m d ) -> ( ( W ` ( s ` ( H ` c ) ) ) X. ( W ` ( s ` ( H ` d ) ) ) ) C_ M ) |
138 |
137
|
ssbrd |
|- ( ( ph /\ c m d ) -> ( u ( ( W ` ( s ` ( H ` c ) ) ) X. ( W ` ( s ` ( H ` d ) ) ) ) v -> u M v ) ) |
139 |
121 138
|
syl5bir |
|- ( ( ph /\ c m d ) -> ( ( u e. ( W ` ( s ` ( H ` c ) ) ) /\ v e. ( W ` ( s ` ( H ` d ) ) ) ) -> u M v ) ) |
140 |
139
|
imp |
|- ( ( ( ph /\ c m d ) /\ ( u e. ( W ` ( s ` ( H ` c ) ) ) /\ v e. ( W ` ( s ` ( H ` d ) ) ) ) ) -> u M v ) |
141 |
|
vex |
|- u e. _V |
142 |
|
vex |
|- v e. _V |
143 |
|
breq12 |
|- ( ( x = u /\ y = v ) -> ( x M y <-> u M v ) ) |
144 |
|
simpl |
|- ( ( x = u /\ y = v ) -> x = u ) |
145 |
144
|
fveq2d |
|- ( ( x = u /\ y = v ) -> ( H ` x ) = ( H ` u ) ) |
146 |
145
|
fveq2d |
|- ( ( x = u /\ y = v ) -> ( S ` ( H ` x ) ) = ( S ` ( H ` u ) ) ) |
147 |
146
|
fveq2d |
|- ( ( x = u /\ y = v ) -> ( W ` ( S ` ( H ` x ) ) ) = ( W ` ( S ` ( H ` u ) ) ) ) |
148 |
147
|
eleq2d |
|- ( ( x = u /\ y = v ) -> ( a e. ( W ` ( S ` ( H ` x ) ) ) <-> a e. ( W ` ( S ` ( H ` u ) ) ) ) ) |
149 |
|
simpr |
|- ( ( x = u /\ y = v ) -> y = v ) |
150 |
149
|
fveq2d |
|- ( ( x = u /\ y = v ) -> ( H ` y ) = ( H ` v ) ) |
151 |
150
|
fveq2d |
|- ( ( x = u /\ y = v ) -> ( S ` ( H ` y ) ) = ( S ` ( H ` v ) ) ) |
152 |
151
|
fveq2d |
|- ( ( x = u /\ y = v ) -> ( W ` ( S ` ( H ` y ) ) ) = ( W ` ( S ` ( H ` v ) ) ) ) |
153 |
152
|
eleq2d |
|- ( ( x = u /\ y = v ) -> ( b e. ( W ` ( S ` ( H ` y ) ) ) <-> b e. ( W ` ( S ` ( H ` v ) ) ) ) ) |
154 |
143 148 153
|
3anbi123d |
|- ( ( x = u /\ y = v ) -> ( ( x M y /\ a e. ( W ` ( S ` ( H ` x ) ) ) /\ b e. ( W ` ( S ` ( H ` y ) ) ) ) <-> ( u M v /\ a e. ( W ` ( S ` ( H ` u ) ) ) /\ b e. ( W ` ( S ` ( H ` v ) ) ) ) ) ) |
155 |
154
|
anbi2d |
|- ( ( x = u /\ y = v ) -> ( ( ph /\ ( x M y /\ a e. ( W ` ( S ` ( H ` x ) ) ) /\ b e. ( W ` ( S ` ( H ` y ) ) ) ) ) <-> ( ph /\ ( u M v /\ a e. ( W ` ( S ` ( H ` u ) ) ) /\ b e. ( W ` ( S ` ( H ` v ) ) ) ) ) ) ) |
156 |
155
|
imbi1d |
|- ( ( x = u /\ y = v ) -> ( ( ( ph /\ ( x M y /\ a e. ( W ` ( S ` ( H ` x ) ) ) /\ b e. ( W ` ( S ` ( H ` y ) ) ) ) ) -> a K b ) <-> ( ( ph /\ ( u M v /\ a e. ( W ` ( S ` ( H ` u ) ) ) /\ b e. ( W ` ( S ` ( H ` v ) ) ) ) ) -> a K b ) ) ) |
157 |
141 142 156 16
|
vtocl2 |
|- ( ( ph /\ ( u M v /\ a e. ( W ` ( S ` ( H ` u ) ) ) /\ b e. ( W ` ( S ` ( H ` v ) ) ) ) ) -> a K b ) |
158 |
157
|
3exp2 |
|- ( ph -> ( u M v -> ( a e. ( W ` ( S ` ( H ` u ) ) ) -> ( b e. ( W ` ( S ` ( H ` v ) ) ) -> a K b ) ) ) ) |
159 |
158
|
imp4b |
|- ( ( ph /\ u M v ) -> ( ( a e. ( W ` ( S ` ( H ` u ) ) ) /\ b e. ( W ` ( S ` ( H ` v ) ) ) ) -> a K b ) ) |
160 |
120 140 159
|
syl2anc |
|- ( ( ( ph /\ c m d ) /\ ( u e. ( W ` ( s ` ( H ` c ) ) ) /\ v e. ( W ` ( s ` ( H ` d ) ) ) ) ) -> ( ( a e. ( W ` ( S ` ( H ` u ) ) ) /\ b e. ( W ` ( S ` ( H ` v ) ) ) ) -> a K b ) ) |
161 |
160
|
rexlimdvva |
|- ( ( ph /\ c m d ) -> ( E. u e. ( W ` ( s ` ( H ` c ) ) ) E. v e. ( W ` ( s ` ( H ` d ) ) ) ( a e. ( W ` ( S ` ( H ` u ) ) ) /\ b e. ( W ` ( S ` ( H ` v ) ) ) ) -> a K b ) ) |
162 |
119 161
|
syl5bir |
|- ( ( ph /\ c m d ) -> ( ( E. u e. ( W ` ( s ` ( H ` c ) ) ) a e. ( W ` ( S ` ( H ` u ) ) ) /\ E. v e. ( W ` ( s ` ( H ` d ) ) ) b e. ( W ` ( S ` ( H ` v ) ) ) ) -> a K b ) ) |
163 |
118 162
|
sylbid |
|- ( ( ph /\ c m d ) -> ( ( a e. ( W ` ( ( S o. s ) ` ( H ` c ) ) ) /\ b e. ( W ` ( ( S o. s ) ` ( H ` d ) ) ) ) -> a K b ) ) |
164 |
163
|
exp4b |
|- ( ph -> ( c m d -> ( a e. ( W ` ( ( S o. s ) ` ( H ` c ) ) ) -> ( b e. ( W ` ( ( S o. s ) ` ( H ` d ) ) ) -> a K b ) ) ) ) |
165 |
164
|
3imp2 |
|- ( ( ph /\ ( c m d /\ a e. ( W ` ( ( S o. s ) ` ( H ` c ) ) ) /\ b e. ( W ` ( ( S o. s ) ` ( H ` d ) ) ) ) ) -> a K b ) |
166 |
1 2 3 4 5 6 23 8 9 10 11 17 38 67 78 165
|
mclsax |
|- ( ph -> ( ( S o. s ) ` p ) e. ( K C B ) ) |
167 |
36 166
|
eqeltrrd |
|- ( ph -> ( S ` ( s ` p ) ) e. ( K C B ) ) |
168 |
40
|
ffnd |
|- ( ph -> S Fn E ) |
169 |
|
elpreima |
|- ( S Fn E -> ( ( s ` p ) e. ( `' S " ( K C B ) ) <-> ( ( s ` p ) e. E /\ ( S ` ( s ` p ) ) e. ( K C B ) ) ) ) |
170 |
168 169
|
syl |
|- ( ph -> ( ( s ` p ) e. ( `' S " ( K C B ) ) <-> ( ( s ` p ) e. E /\ ( S ` ( s ` p ) ) e. ( K C B ) ) ) ) |
171 |
34 167 170
|
mpbir2and |
|- ( ph -> ( s ` p ) e. ( `' S " ( K C B ) ) ) |