Step |
Hyp |
Ref |
Expression |
1 |
|
mclspps.d |
|- D = ( mDV ` T ) |
2 |
|
mclspps.e |
|- E = ( mEx ` T ) |
3 |
|
mclspps.c |
|- C = ( mCls ` T ) |
4 |
|
mclspps.1 |
|- ( ph -> T e. mFS ) |
5 |
|
mclspps.2 |
|- ( ph -> K C_ D ) |
6 |
|
mclspps.3 |
|- ( ph -> B C_ E ) |
7 |
|
mclspps.j |
|- J = ( mPPSt ` T ) |
8 |
|
mclspps.l |
|- L = ( mSubst ` T ) |
9 |
|
mclspps.v |
|- V = ( mVR ` T ) |
10 |
|
mclspps.h |
|- H = ( mVH ` T ) |
11 |
|
mclspps.w |
|- W = ( mVars ` T ) |
12 |
|
mclspps.4 |
|- ( ph -> <. M , O , P >. e. J ) |
13 |
|
mclspps.5 |
|- ( ph -> S e. ran L ) |
14 |
|
mclspps.6 |
|- ( ( ph /\ x e. O ) -> ( S ` x ) e. ( K C B ) ) |
15 |
|
mclspps.7 |
|- ( ( ph /\ v e. V ) -> ( S ` ( H ` v ) ) e. ( K C B ) ) |
16 |
|
mclspps.8 |
|- ( ( ph /\ ( x M y /\ a e. ( W ` ( S ` ( H ` x ) ) ) /\ b e. ( W ` ( S ` ( H ` y ) ) ) ) ) -> a K b ) |
17 |
8 2
|
msubf |
|- ( S e. ran L -> S : E --> E ) |
18 |
13 17
|
syl |
|- ( ph -> S : E --> E ) |
19 |
18
|
ffnd |
|- ( ph -> S Fn E ) |
20 |
|
eqid |
|- ( mPreSt ` T ) = ( mPreSt ` T ) |
21 |
20 7
|
mppspst |
|- J C_ ( mPreSt ` T ) |
22 |
21 12
|
sselid |
|- ( ph -> <. M , O , P >. e. ( mPreSt ` T ) ) |
23 |
1 2 20
|
elmpst |
|- ( <. M , O , P >. e. ( mPreSt ` T ) <-> ( ( M C_ D /\ `' M = M ) /\ ( O C_ E /\ O e. Fin ) /\ P e. E ) ) |
24 |
22 23
|
sylib |
|- ( ph -> ( ( M C_ D /\ `' M = M ) /\ ( O C_ E /\ O e. Fin ) /\ P e. E ) ) |
25 |
24
|
simp1d |
|- ( ph -> ( M C_ D /\ `' M = M ) ) |
26 |
25
|
simpld |
|- ( ph -> M C_ D ) |
27 |
24
|
simp2d |
|- ( ph -> ( O C_ E /\ O e. Fin ) ) |
28 |
27
|
simpld |
|- ( ph -> O C_ E ) |
29 |
|
eqid |
|- ( mAx ` T ) = ( mAx ` T ) |
30 |
14
|
ralrimiva |
|- ( ph -> A. x e. O ( S ` x ) e. ( K C B ) ) |
31 |
18
|
ffund |
|- ( ph -> Fun S ) |
32 |
18
|
fdmd |
|- ( ph -> dom S = E ) |
33 |
28 32
|
sseqtrrd |
|- ( ph -> O C_ dom S ) |
34 |
|
funimass5 |
|- ( ( Fun S /\ O C_ dom S ) -> ( O C_ ( `' S " ( K C B ) ) <-> A. x e. O ( S ` x ) e. ( K C B ) ) ) |
35 |
31 33 34
|
syl2anc |
|- ( ph -> ( O C_ ( `' S " ( K C B ) ) <-> A. x e. O ( S ` x ) e. ( K C B ) ) ) |
36 |
30 35
|
mpbird |
|- ( ph -> O C_ ( `' S " ( K C B ) ) ) |
37 |
9 2 10
|
mvhf |
|- ( T e. mFS -> H : V --> E ) |
38 |
4 37
|
syl |
|- ( ph -> H : V --> E ) |
39 |
38
|
ffvelrnda |
|- ( ( ph /\ v e. V ) -> ( H ` v ) e. E ) |
40 |
|
elpreima |
|- ( S Fn E -> ( ( H ` v ) e. ( `' S " ( K C B ) ) <-> ( ( H ` v ) e. E /\ ( S ` ( H ` v ) ) e. ( K C B ) ) ) ) |
41 |
19 40
|
syl |
|- ( ph -> ( ( H ` v ) e. ( `' S " ( K C B ) ) <-> ( ( H ` v ) e. E /\ ( S ` ( H ` v ) ) e. ( K C B ) ) ) ) |
42 |
41
|
adantr |
|- ( ( ph /\ v e. V ) -> ( ( H ` v ) e. ( `' S " ( K C B ) ) <-> ( ( H ` v ) e. E /\ ( S ` ( H ` v ) ) e. ( K C B ) ) ) ) |
43 |
39 15 42
|
mpbir2and |
|- ( ( ph /\ v e. V ) -> ( H ` v ) e. ( `' S " ( K C B ) ) ) |
44 |
4
|
3ad2ant1 |
|- ( ( ph /\ ( <. m , o , p >. e. ( mAx ` T ) /\ s e. ran L /\ ( s " ( o u. ran H ) ) C_ ( `' S " ( K C B ) ) ) /\ A. z A. w ( z m w -> ( ( W ` ( s ` ( H ` z ) ) ) X. ( W ` ( s ` ( H ` w ) ) ) ) C_ M ) ) -> T e. mFS ) |
45 |
5
|
3ad2ant1 |
|- ( ( ph /\ ( <. m , o , p >. e. ( mAx ` T ) /\ s e. ran L /\ ( s " ( o u. ran H ) ) C_ ( `' S " ( K C B ) ) ) /\ A. z A. w ( z m w -> ( ( W ` ( s ` ( H ` z ) ) ) X. ( W ` ( s ` ( H ` w ) ) ) ) C_ M ) ) -> K C_ D ) |
46 |
6
|
3ad2ant1 |
|- ( ( ph /\ ( <. m , o , p >. e. ( mAx ` T ) /\ s e. ran L /\ ( s " ( o u. ran H ) ) C_ ( `' S " ( K C B ) ) ) /\ A. z A. w ( z m w -> ( ( W ` ( s ` ( H ` z ) ) ) X. ( W ` ( s ` ( H ` w ) ) ) ) C_ M ) ) -> B C_ E ) |
47 |
12
|
3ad2ant1 |
|- ( ( ph /\ ( <. m , o , p >. e. ( mAx ` T ) /\ s e. ran L /\ ( s " ( o u. ran H ) ) C_ ( `' S " ( K C B ) ) ) /\ A. z A. w ( z m w -> ( ( W ` ( s ` ( H ` z ) ) ) X. ( W ` ( s ` ( H ` w ) ) ) ) C_ M ) ) -> <. M , O , P >. e. J ) |
48 |
13
|
3ad2ant1 |
|- ( ( ph /\ ( <. m , o , p >. e. ( mAx ` T ) /\ s e. ran L /\ ( s " ( o u. ran H ) ) C_ ( `' S " ( K C B ) ) ) /\ A. z A. w ( z m w -> ( ( W ` ( s ` ( H ` z ) ) ) X. ( W ` ( s ` ( H ` w ) ) ) ) C_ M ) ) -> S e. ran L ) |
49 |
14
|
3ad2antl1 |
|- ( ( ( ph /\ ( <. m , o , p >. e. ( mAx ` T ) /\ s e. ran L /\ ( s " ( o u. ran H ) ) C_ ( `' S " ( K C B ) ) ) /\ A. z A. w ( z m w -> ( ( W ` ( s ` ( H ` z ) ) ) X. ( W ` ( s ` ( H ` w ) ) ) ) C_ M ) ) /\ x e. O ) -> ( S ` x ) e. ( K C B ) ) |
50 |
15
|
3ad2antl1 |
|- ( ( ( ph /\ ( <. m , o , p >. e. ( mAx ` T ) /\ s e. ran L /\ ( s " ( o u. ran H ) ) C_ ( `' S " ( K C B ) ) ) /\ A. z A. w ( z m w -> ( ( W ` ( s ` ( H ` z ) ) ) X. ( W ` ( s ` ( H ` w ) ) ) ) C_ M ) ) /\ v e. V ) -> ( S ` ( H ` v ) ) e. ( K C B ) ) |
51 |
16
|
3ad2antl1 |
|- ( ( ( ph /\ ( <. m , o , p >. e. ( mAx ` T ) /\ s e. ran L /\ ( s " ( o u. ran H ) ) C_ ( `' S " ( K C B ) ) ) /\ A. z A. w ( z m w -> ( ( W ` ( s ` ( H ` z ) ) ) X. ( W ` ( s ` ( H ` w ) ) ) ) C_ M ) ) /\ ( x M y /\ a e. ( W ` ( S ` ( H ` x ) ) ) /\ b e. ( W ` ( S ` ( H ` y ) ) ) ) ) -> a K b ) |
52 |
|
simp21 |
|- ( ( ph /\ ( <. m , o , p >. e. ( mAx ` T ) /\ s e. ran L /\ ( s " ( o u. ran H ) ) C_ ( `' S " ( K C B ) ) ) /\ A. z A. w ( z m w -> ( ( W ` ( s ` ( H ` z ) ) ) X. ( W ` ( s ` ( H ` w ) ) ) ) C_ M ) ) -> <. m , o , p >. e. ( mAx ` T ) ) |
53 |
|
simp22 |
|- ( ( ph /\ ( <. m , o , p >. e. ( mAx ` T ) /\ s e. ran L /\ ( s " ( o u. ran H ) ) C_ ( `' S " ( K C B ) ) ) /\ A. z A. w ( z m w -> ( ( W ` ( s ` ( H ` z ) ) ) X. ( W ` ( s ` ( H ` w ) ) ) ) C_ M ) ) -> s e. ran L ) |
54 |
|
simp23 |
|- ( ( ph /\ ( <. m , o , p >. e. ( mAx ` T ) /\ s e. ran L /\ ( s " ( o u. ran H ) ) C_ ( `' S " ( K C B ) ) ) /\ A. z A. w ( z m w -> ( ( W ` ( s ` ( H ` z ) ) ) X. ( W ` ( s ` ( H ` w ) ) ) ) C_ M ) ) -> ( s " ( o u. ran H ) ) C_ ( `' S " ( K C B ) ) ) |
55 |
|
simp3 |
|- ( ( ph /\ ( <. m , o , p >. e. ( mAx ` T ) /\ s e. ran L /\ ( s " ( o u. ran H ) ) C_ ( `' S " ( K C B ) ) ) /\ A. z A. w ( z m w -> ( ( W ` ( s ` ( H ` z ) ) ) X. ( W ` ( s ` ( H ` w ) ) ) ) C_ M ) ) -> A. z A. w ( z m w -> ( ( W ` ( s ` ( H ` z ) ) ) X. ( W ` ( s ` ( H ` w ) ) ) ) C_ M ) ) |
56 |
1 2 3 44 45 46 7 8 9 10 11 47 48 49 50 51 52 53 54 55
|
mclsppslem |
|- ( ( ph /\ ( <. m , o , p >. e. ( mAx ` T ) /\ s e. ran L /\ ( s " ( o u. ran H ) ) C_ ( `' S " ( K C B ) ) ) /\ A. z A. w ( z m w -> ( ( W ` ( s ` ( H ` z ) ) ) X. ( W ` ( s ` ( H ` w ) ) ) ) C_ M ) ) -> ( s ` p ) e. ( `' S " ( K C B ) ) ) |
57 |
1 2 3 4 26 28 29 8 9 10 11 36 43 56
|
mclsind |
|- ( ph -> ( M C O ) C_ ( `' S " ( K C B ) ) ) |
58 |
20 7 3
|
elmpps |
|- ( <. M , O , P >. e. J <-> ( <. M , O , P >. e. ( mPreSt ` T ) /\ P e. ( M C O ) ) ) |
59 |
58
|
simprbi |
|- ( <. M , O , P >. e. J -> P e. ( M C O ) ) |
60 |
12 59
|
syl |
|- ( ph -> P e. ( M C O ) ) |
61 |
57 60
|
sseldd |
|- ( ph -> P e. ( `' S " ( K C B ) ) ) |
62 |
|
elpreima |
|- ( S Fn E -> ( P e. ( `' S " ( K C B ) ) <-> ( P e. E /\ ( S ` P ) e. ( K C B ) ) ) ) |
63 |
62
|
simplbda |
|- ( ( S Fn E /\ P e. ( `' S " ( K C B ) ) ) -> ( S ` P ) e. ( K C B ) ) |
64 |
19 61 63
|
syl2anc |
|- ( ph -> ( S ` P ) e. ( K C B ) ) |