Step |
Hyp |
Ref |
Expression |
1 |
|
mclspps.d |
⊢ 𝐷 = ( mDV ‘ 𝑇 ) |
2 |
|
mclspps.e |
⊢ 𝐸 = ( mEx ‘ 𝑇 ) |
3 |
|
mclspps.c |
⊢ 𝐶 = ( mCls ‘ 𝑇 ) |
4 |
|
mclspps.1 |
⊢ ( 𝜑 → 𝑇 ∈ mFS ) |
5 |
|
mclspps.2 |
⊢ ( 𝜑 → 𝐾 ⊆ 𝐷 ) |
6 |
|
mclspps.3 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐸 ) |
7 |
|
mclspps.j |
⊢ 𝐽 = ( mPPSt ‘ 𝑇 ) |
8 |
|
mclspps.l |
⊢ 𝐿 = ( mSubst ‘ 𝑇 ) |
9 |
|
mclspps.v |
⊢ 𝑉 = ( mVR ‘ 𝑇 ) |
10 |
|
mclspps.h |
⊢ 𝐻 = ( mVH ‘ 𝑇 ) |
11 |
|
mclspps.w |
⊢ 𝑊 = ( mVars ‘ 𝑇 ) |
12 |
|
mclspps.4 |
⊢ ( 𝜑 → 〈 𝑀 , 𝑂 , 𝑃 〉 ∈ 𝐽 ) |
13 |
|
mclspps.5 |
⊢ ( 𝜑 → 𝑆 ∈ ran 𝐿 ) |
14 |
|
mclspps.6 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑂 ) → ( 𝑆 ‘ 𝑥 ) ∈ ( 𝐾 𝐶 𝐵 ) ) |
15 |
|
mclspps.7 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ∈ ( 𝐾 𝐶 𝐵 ) ) |
16 |
|
mclspps.8 |
⊢ ( ( 𝜑 ∧ ( 𝑥 𝑀 𝑦 ∧ 𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ∧ 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ) → 𝑎 𝐾 𝑏 ) |
17 |
8 2
|
msubf |
⊢ ( 𝑆 ∈ ran 𝐿 → 𝑆 : 𝐸 ⟶ 𝐸 ) |
18 |
13 17
|
syl |
⊢ ( 𝜑 → 𝑆 : 𝐸 ⟶ 𝐸 ) |
19 |
18
|
ffnd |
⊢ ( 𝜑 → 𝑆 Fn 𝐸 ) |
20 |
|
eqid |
⊢ ( mPreSt ‘ 𝑇 ) = ( mPreSt ‘ 𝑇 ) |
21 |
20 7
|
mppspst |
⊢ 𝐽 ⊆ ( mPreSt ‘ 𝑇 ) |
22 |
21 12
|
sselid |
⊢ ( 𝜑 → 〈 𝑀 , 𝑂 , 𝑃 〉 ∈ ( mPreSt ‘ 𝑇 ) ) |
23 |
1 2 20
|
elmpst |
⊢ ( 〈 𝑀 , 𝑂 , 𝑃 〉 ∈ ( mPreSt ‘ 𝑇 ) ↔ ( ( 𝑀 ⊆ 𝐷 ∧ ◡ 𝑀 = 𝑀 ) ∧ ( 𝑂 ⊆ 𝐸 ∧ 𝑂 ∈ Fin ) ∧ 𝑃 ∈ 𝐸 ) ) |
24 |
22 23
|
sylib |
⊢ ( 𝜑 → ( ( 𝑀 ⊆ 𝐷 ∧ ◡ 𝑀 = 𝑀 ) ∧ ( 𝑂 ⊆ 𝐸 ∧ 𝑂 ∈ Fin ) ∧ 𝑃 ∈ 𝐸 ) ) |
25 |
24
|
simp1d |
⊢ ( 𝜑 → ( 𝑀 ⊆ 𝐷 ∧ ◡ 𝑀 = 𝑀 ) ) |
26 |
25
|
simpld |
⊢ ( 𝜑 → 𝑀 ⊆ 𝐷 ) |
27 |
24
|
simp2d |
⊢ ( 𝜑 → ( 𝑂 ⊆ 𝐸 ∧ 𝑂 ∈ Fin ) ) |
28 |
27
|
simpld |
⊢ ( 𝜑 → 𝑂 ⊆ 𝐸 ) |
29 |
|
eqid |
⊢ ( mAx ‘ 𝑇 ) = ( mAx ‘ 𝑇 ) |
30 |
14
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑂 ( 𝑆 ‘ 𝑥 ) ∈ ( 𝐾 𝐶 𝐵 ) ) |
31 |
18
|
ffund |
⊢ ( 𝜑 → Fun 𝑆 ) |
32 |
18
|
fdmd |
⊢ ( 𝜑 → dom 𝑆 = 𝐸 ) |
33 |
28 32
|
sseqtrrd |
⊢ ( 𝜑 → 𝑂 ⊆ dom 𝑆 ) |
34 |
|
funimass5 |
⊢ ( ( Fun 𝑆 ∧ 𝑂 ⊆ dom 𝑆 ) → ( 𝑂 ⊆ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ↔ ∀ 𝑥 ∈ 𝑂 ( 𝑆 ‘ 𝑥 ) ∈ ( 𝐾 𝐶 𝐵 ) ) ) |
35 |
31 33 34
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ⊆ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ↔ ∀ 𝑥 ∈ 𝑂 ( 𝑆 ‘ 𝑥 ) ∈ ( 𝐾 𝐶 𝐵 ) ) ) |
36 |
30 35
|
mpbird |
⊢ ( 𝜑 → 𝑂 ⊆ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) |
37 |
9 2 10
|
mvhf |
⊢ ( 𝑇 ∈ mFS → 𝐻 : 𝑉 ⟶ 𝐸 ) |
38 |
4 37
|
syl |
⊢ ( 𝜑 → 𝐻 : 𝑉 ⟶ 𝐸 ) |
39 |
38
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ( 𝐻 ‘ 𝑣 ) ∈ 𝐸 ) |
40 |
|
elpreima |
⊢ ( 𝑆 Fn 𝐸 → ( ( 𝐻 ‘ 𝑣 ) ∈ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ↔ ( ( 𝐻 ‘ 𝑣 ) ∈ 𝐸 ∧ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ∈ ( 𝐾 𝐶 𝐵 ) ) ) ) |
41 |
19 40
|
syl |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝑣 ) ∈ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ↔ ( ( 𝐻 ‘ 𝑣 ) ∈ 𝐸 ∧ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ∈ ( 𝐾 𝐶 𝐵 ) ) ) ) |
42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ( ( 𝐻 ‘ 𝑣 ) ∈ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ↔ ( ( 𝐻 ‘ 𝑣 ) ∈ 𝐸 ∧ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ∈ ( 𝐾 𝐶 𝐵 ) ) ) ) |
43 |
39 15 42
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ( 𝐻 ‘ 𝑣 ) ∈ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) |
44 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧 ∀ 𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑤 ) ) ) ) ⊆ 𝑀 ) ) → 𝑇 ∈ mFS ) |
45 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧 ∀ 𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑤 ) ) ) ) ⊆ 𝑀 ) ) → 𝐾 ⊆ 𝐷 ) |
46 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧 ∀ 𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑤 ) ) ) ) ⊆ 𝑀 ) ) → 𝐵 ⊆ 𝐸 ) |
47 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧 ∀ 𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑤 ) ) ) ) ⊆ 𝑀 ) ) → 〈 𝑀 , 𝑂 , 𝑃 〉 ∈ 𝐽 ) |
48 |
13
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧 ∀ 𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑤 ) ) ) ) ⊆ 𝑀 ) ) → 𝑆 ∈ ran 𝐿 ) |
49 |
14
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧 ∀ 𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑤 ) ) ) ) ⊆ 𝑀 ) ) ∧ 𝑥 ∈ 𝑂 ) → ( 𝑆 ‘ 𝑥 ) ∈ ( 𝐾 𝐶 𝐵 ) ) |
50 |
15
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧 ∀ 𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑤 ) ) ) ) ⊆ 𝑀 ) ) ∧ 𝑣 ∈ 𝑉 ) → ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ∈ ( 𝐾 𝐶 𝐵 ) ) |
51 |
16
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧 ∀ 𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑤 ) ) ) ) ⊆ 𝑀 ) ) ∧ ( 𝑥 𝑀 𝑦 ∧ 𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ∧ 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ) → 𝑎 𝐾 𝑏 ) |
52 |
|
simp21 |
⊢ ( ( 𝜑 ∧ ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧 ∀ 𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑤 ) ) ) ) ⊆ 𝑀 ) ) → 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑇 ) ) |
53 |
|
simp22 |
⊢ ( ( 𝜑 ∧ ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧 ∀ 𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑤 ) ) ) ) ⊆ 𝑀 ) ) → 𝑠 ∈ ran 𝐿 ) |
54 |
|
simp23 |
⊢ ( ( 𝜑 ∧ ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧 ∀ 𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑤 ) ) ) ) ⊆ 𝑀 ) ) → ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) |
55 |
|
simp3 |
⊢ ( ( 𝜑 ∧ ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧 ∀ 𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑤 ) ) ) ) ⊆ 𝑀 ) ) → ∀ 𝑧 ∀ 𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑤 ) ) ) ) ⊆ 𝑀 ) ) |
56 |
1 2 3 44 45 46 7 8 9 10 11 47 48 49 50 51 52 53 54 55
|
mclsppslem |
⊢ ( ( 𝜑 ∧ ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧 ∀ 𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑤 ) ) ) ) ⊆ 𝑀 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) |
57 |
1 2 3 4 26 28 29 8 9 10 11 36 43 56
|
mclsind |
⊢ ( 𝜑 → ( 𝑀 𝐶 𝑂 ) ⊆ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) |
58 |
20 7 3
|
elmpps |
⊢ ( 〈 𝑀 , 𝑂 , 𝑃 〉 ∈ 𝐽 ↔ ( 〈 𝑀 , 𝑂 , 𝑃 〉 ∈ ( mPreSt ‘ 𝑇 ) ∧ 𝑃 ∈ ( 𝑀 𝐶 𝑂 ) ) ) |
59 |
58
|
simprbi |
⊢ ( 〈 𝑀 , 𝑂 , 𝑃 〉 ∈ 𝐽 → 𝑃 ∈ ( 𝑀 𝐶 𝑂 ) ) |
60 |
12 59
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ( 𝑀 𝐶 𝑂 ) ) |
61 |
57 60
|
sseldd |
⊢ ( 𝜑 → 𝑃 ∈ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) |
62 |
|
elpreima |
⊢ ( 𝑆 Fn 𝐸 → ( 𝑃 ∈ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ↔ ( 𝑃 ∈ 𝐸 ∧ ( 𝑆 ‘ 𝑃 ) ∈ ( 𝐾 𝐶 𝐵 ) ) ) ) |
63 |
62
|
simplbda |
⊢ ( ( 𝑆 Fn 𝐸 ∧ 𝑃 ∈ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) → ( 𝑆 ‘ 𝑃 ) ∈ ( 𝐾 𝐶 𝐵 ) ) |
64 |
19 61 63
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑃 ) ∈ ( 𝐾 𝐶 𝐵 ) ) |