Metamath Proof Explorer


Theorem mclspps

Description: The closure is closed under application of provable pre-statements. (Compare mclsax .) This theorem is what justifies the treatment of theorems as "equivalent" to axioms once they have been proven: the composition of one theorem in the proof of another yields a theorem. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclspps.d 𝐷 = ( mDV ‘ 𝑇 )
mclspps.e 𝐸 = ( mEx ‘ 𝑇 )
mclspps.c 𝐶 = ( mCls ‘ 𝑇 )
mclspps.1 ( 𝜑𝑇 ∈ mFS )
mclspps.2 ( 𝜑𝐾𝐷 )
mclspps.3 ( 𝜑𝐵𝐸 )
mclspps.j 𝐽 = ( mPPSt ‘ 𝑇 )
mclspps.l 𝐿 = ( mSubst ‘ 𝑇 )
mclspps.v 𝑉 = ( mVR ‘ 𝑇 )
mclspps.h 𝐻 = ( mVH ‘ 𝑇 )
mclspps.w 𝑊 = ( mVars ‘ 𝑇 )
mclspps.4 ( 𝜑 → ⟨ 𝑀 , 𝑂 , 𝑃 ⟩ ∈ 𝐽 )
mclspps.5 ( 𝜑𝑆 ∈ ran 𝐿 )
mclspps.6 ( ( 𝜑𝑥𝑂 ) → ( 𝑆𝑥 ) ∈ ( 𝐾 𝐶 𝐵 ) )
mclspps.7 ( ( 𝜑𝑣𝑉 ) → ( 𝑆 ‘ ( 𝐻𝑣 ) ) ∈ ( 𝐾 𝐶 𝐵 ) )
mclspps.8 ( ( 𝜑 ∧ ( 𝑥 𝑀 𝑦𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻𝑥 ) ) ) ∧ 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻𝑦 ) ) ) ) ) → 𝑎 𝐾 𝑏 )
Assertion mclspps ( 𝜑 → ( 𝑆𝑃 ) ∈ ( 𝐾 𝐶 𝐵 ) )

Proof

Step Hyp Ref Expression
1 mclspps.d 𝐷 = ( mDV ‘ 𝑇 )
2 mclspps.e 𝐸 = ( mEx ‘ 𝑇 )
3 mclspps.c 𝐶 = ( mCls ‘ 𝑇 )
4 mclspps.1 ( 𝜑𝑇 ∈ mFS )
5 mclspps.2 ( 𝜑𝐾𝐷 )
6 mclspps.3 ( 𝜑𝐵𝐸 )
7 mclspps.j 𝐽 = ( mPPSt ‘ 𝑇 )
8 mclspps.l 𝐿 = ( mSubst ‘ 𝑇 )
9 mclspps.v 𝑉 = ( mVR ‘ 𝑇 )
10 mclspps.h 𝐻 = ( mVH ‘ 𝑇 )
11 mclspps.w 𝑊 = ( mVars ‘ 𝑇 )
12 mclspps.4 ( 𝜑 → ⟨ 𝑀 , 𝑂 , 𝑃 ⟩ ∈ 𝐽 )
13 mclspps.5 ( 𝜑𝑆 ∈ ran 𝐿 )
14 mclspps.6 ( ( 𝜑𝑥𝑂 ) → ( 𝑆𝑥 ) ∈ ( 𝐾 𝐶 𝐵 ) )
15 mclspps.7 ( ( 𝜑𝑣𝑉 ) → ( 𝑆 ‘ ( 𝐻𝑣 ) ) ∈ ( 𝐾 𝐶 𝐵 ) )
16 mclspps.8 ( ( 𝜑 ∧ ( 𝑥 𝑀 𝑦𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻𝑥 ) ) ) ∧ 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻𝑦 ) ) ) ) ) → 𝑎 𝐾 𝑏 )
17 8 2 msubf ( 𝑆 ∈ ran 𝐿𝑆 : 𝐸𝐸 )
18 13 17 syl ( 𝜑𝑆 : 𝐸𝐸 )
19 18 ffnd ( 𝜑𝑆 Fn 𝐸 )
20 eqid ( mPreSt ‘ 𝑇 ) = ( mPreSt ‘ 𝑇 )
21 20 7 mppspst 𝐽 ⊆ ( mPreSt ‘ 𝑇 )
22 21 12 sseldi ( 𝜑 → ⟨ 𝑀 , 𝑂 , 𝑃 ⟩ ∈ ( mPreSt ‘ 𝑇 ) )
23 1 2 20 elmpst ( ⟨ 𝑀 , 𝑂 , 𝑃 ⟩ ∈ ( mPreSt ‘ 𝑇 ) ↔ ( ( 𝑀𝐷 𝑀 = 𝑀 ) ∧ ( 𝑂𝐸𝑂 ∈ Fin ) ∧ 𝑃𝐸 ) )
24 22 23 sylib ( 𝜑 → ( ( 𝑀𝐷 𝑀 = 𝑀 ) ∧ ( 𝑂𝐸𝑂 ∈ Fin ) ∧ 𝑃𝐸 ) )
25 24 simp1d ( 𝜑 → ( 𝑀𝐷 𝑀 = 𝑀 ) )
26 25 simpld ( 𝜑𝑀𝐷 )
27 24 simp2d ( 𝜑 → ( 𝑂𝐸𝑂 ∈ Fin ) )
28 27 simpld ( 𝜑𝑂𝐸 )
29 eqid ( mAx ‘ 𝑇 ) = ( mAx ‘ 𝑇 )
30 14 ralrimiva ( 𝜑 → ∀ 𝑥𝑂 ( 𝑆𝑥 ) ∈ ( 𝐾 𝐶 𝐵 ) )
31 18 ffund ( 𝜑 → Fun 𝑆 )
32 18 fdmd ( 𝜑 → dom 𝑆 = 𝐸 )
33 28 32 sseqtrrd ( 𝜑𝑂 ⊆ dom 𝑆 )
34 funimass5 ( ( Fun 𝑆𝑂 ⊆ dom 𝑆 ) → ( 𝑂 ⊆ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ↔ ∀ 𝑥𝑂 ( 𝑆𝑥 ) ∈ ( 𝐾 𝐶 𝐵 ) ) )
35 31 33 34 syl2anc ( 𝜑 → ( 𝑂 ⊆ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ↔ ∀ 𝑥𝑂 ( 𝑆𝑥 ) ∈ ( 𝐾 𝐶 𝐵 ) ) )
36 30 35 mpbird ( 𝜑𝑂 ⊆ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) )
37 9 2 10 mvhf ( 𝑇 ∈ mFS → 𝐻 : 𝑉𝐸 )
38 4 37 syl ( 𝜑𝐻 : 𝑉𝐸 )
39 38 ffvelrnda ( ( 𝜑𝑣𝑉 ) → ( 𝐻𝑣 ) ∈ 𝐸 )
40 elpreima ( 𝑆 Fn 𝐸 → ( ( 𝐻𝑣 ) ∈ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ↔ ( ( 𝐻𝑣 ) ∈ 𝐸 ∧ ( 𝑆 ‘ ( 𝐻𝑣 ) ) ∈ ( 𝐾 𝐶 𝐵 ) ) ) )
41 19 40 syl ( 𝜑 → ( ( 𝐻𝑣 ) ∈ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ↔ ( ( 𝐻𝑣 ) ∈ 𝐸 ∧ ( 𝑆 ‘ ( 𝐻𝑣 ) ) ∈ ( 𝐾 𝐶 𝐵 ) ) ) )
42 41 adantr ( ( 𝜑𝑣𝑉 ) → ( ( 𝐻𝑣 ) ∈ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ↔ ( ( 𝐻𝑣 ) ∈ 𝐸 ∧ ( 𝑆 ‘ ( 𝐻𝑣 ) ) ∈ ( 𝐾 𝐶 𝐵 ) ) ) )
43 39 15 42 mpbir2and ( ( 𝜑𝑣𝑉 ) → ( 𝐻𝑣 ) ∈ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) )
44 4 3ad2ant1 ( ( 𝜑 ∧ ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑤 ) ) ) ) ⊆ 𝑀 ) ) → 𝑇 ∈ mFS )
45 5 3ad2ant1 ( ( 𝜑 ∧ ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑤 ) ) ) ) ⊆ 𝑀 ) ) → 𝐾𝐷 )
46 6 3ad2ant1 ( ( 𝜑 ∧ ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑤 ) ) ) ) ⊆ 𝑀 ) ) → 𝐵𝐸 )
47 12 3ad2ant1 ( ( 𝜑 ∧ ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑤 ) ) ) ) ⊆ 𝑀 ) ) → ⟨ 𝑀 , 𝑂 , 𝑃 ⟩ ∈ 𝐽 )
48 13 3ad2ant1 ( ( 𝜑 ∧ ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑤 ) ) ) ) ⊆ 𝑀 ) ) → 𝑆 ∈ ran 𝐿 )
49 14 3ad2antl1 ( ( ( 𝜑 ∧ ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑤 ) ) ) ) ⊆ 𝑀 ) ) ∧ 𝑥𝑂 ) → ( 𝑆𝑥 ) ∈ ( 𝐾 𝐶 𝐵 ) )
50 15 3ad2antl1 ( ( ( 𝜑 ∧ ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑤 ) ) ) ) ⊆ 𝑀 ) ) ∧ 𝑣𝑉 ) → ( 𝑆 ‘ ( 𝐻𝑣 ) ) ∈ ( 𝐾 𝐶 𝐵 ) )
51 16 3ad2antl1 ( ( ( 𝜑 ∧ ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑤 ) ) ) ) ⊆ 𝑀 ) ) ∧ ( 𝑥 𝑀 𝑦𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻𝑥 ) ) ) ∧ 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻𝑦 ) ) ) ) ) → 𝑎 𝐾 𝑏 )
52 simp21 ( ( 𝜑 ∧ ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑤 ) ) ) ) ⊆ 𝑀 ) ) → ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑇 ) )
53 simp22 ( ( 𝜑 ∧ ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑤 ) ) ) ) ⊆ 𝑀 ) ) → 𝑠 ∈ ran 𝐿 )
54 simp23 ( ( 𝜑 ∧ ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑤 ) ) ) ) ⊆ 𝑀 ) ) → ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) )
55 simp3 ( ( 𝜑 ∧ ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑤 ) ) ) ) ⊆ 𝑀 ) ) → ∀ 𝑧𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑤 ) ) ) ) ⊆ 𝑀 ) )
56 1 2 3 44 45 46 7 8 9 10 11 47 48 49 50 51 52 53 54 55 mclsppslem ( ( 𝜑 ∧ ( ⟨ 𝑚 , 𝑜 , 𝑝 ⟩ ∈ ( mAx ‘ 𝑇 ) ∧ 𝑠 ∈ ran 𝐿 ∧ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ∧ ∀ 𝑧𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻𝑤 ) ) ) ) ⊆ 𝑀 ) ) → ( 𝑠𝑝 ) ∈ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) )
57 1 2 3 4 26 28 29 8 9 10 11 36 43 56 mclsind ( 𝜑 → ( 𝑀 𝐶 𝑂 ) ⊆ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) )
58 20 7 3 elmpps ( ⟨ 𝑀 , 𝑂 , 𝑃 ⟩ ∈ 𝐽 ↔ ( ⟨ 𝑀 , 𝑂 , 𝑃 ⟩ ∈ ( mPreSt ‘ 𝑇 ) ∧ 𝑃 ∈ ( 𝑀 𝐶 𝑂 ) ) )
59 58 simprbi ( ⟨ 𝑀 , 𝑂 , 𝑃 ⟩ ∈ 𝐽𝑃 ∈ ( 𝑀 𝐶 𝑂 ) )
60 12 59 syl ( 𝜑𝑃 ∈ ( 𝑀 𝐶 𝑂 ) )
61 57 60 sseldd ( 𝜑𝑃 ∈ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) )
62 elpreima ( 𝑆 Fn 𝐸 → ( 𝑃 ∈ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ↔ ( 𝑃𝐸 ∧ ( 𝑆𝑃 ) ∈ ( 𝐾 𝐶 𝐵 ) ) ) )
63 62 simplbda ( ( 𝑆 Fn 𝐸𝑃 ∈ ( 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) → ( 𝑆𝑃 ) ∈ ( 𝐾 𝐶 𝐵 ) )
64 19 61 63 syl2anc ( 𝜑 → ( 𝑆𝑃 ) ∈ ( 𝐾 𝐶 𝐵 ) )