Step |
Hyp |
Ref |
Expression |
1 |
|
mclspps.d |
⊢ 𝐷 = ( mDV ‘ 𝑇 ) |
2 |
|
mclspps.e |
⊢ 𝐸 = ( mEx ‘ 𝑇 ) |
3 |
|
mclspps.c |
⊢ 𝐶 = ( mCls ‘ 𝑇 ) |
4 |
|
mclspps.1 |
⊢ ( 𝜑 → 𝑇 ∈ mFS ) |
5 |
|
mclspps.2 |
⊢ ( 𝜑 → 𝐾 ⊆ 𝐷 ) |
6 |
|
mclspps.3 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐸 ) |
7 |
|
mclspps.j |
⊢ 𝐽 = ( mPPSt ‘ 𝑇 ) |
8 |
|
mclspps.l |
⊢ 𝐿 = ( mSubst ‘ 𝑇 ) |
9 |
|
mclspps.v |
⊢ 𝑉 = ( mVR ‘ 𝑇 ) |
10 |
|
mclspps.h |
⊢ 𝐻 = ( mVH ‘ 𝑇 ) |
11 |
|
mclspps.w |
⊢ 𝑊 = ( mVars ‘ 𝑇 ) |
12 |
|
mclspps.4 |
⊢ ( 𝜑 → 〈 𝑀 , 𝑂 , 𝑃 〉 ∈ 𝐽 ) |
13 |
|
mclspps.5 |
⊢ ( 𝜑 → 𝑆 ∈ ran 𝐿 ) |
14 |
|
mclspps.6 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑂 ) → ( 𝑆 ‘ 𝑥 ) ∈ ( 𝐾 𝐶 𝐵 ) ) |
15 |
|
mclspps.7 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ∈ ( 𝐾 𝐶 𝐵 ) ) |
16 |
|
mclspps.8 |
⊢ ( ( 𝜑 ∧ ( 𝑥 𝑀 𝑦 ∧ 𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ∧ 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ) → 𝑎 𝐾 𝑏 ) |
17 |
|
mclsppslem.9 |
⊢ ( 𝜑 → 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑇 ) ) |
18 |
|
mclsppslem.10 |
⊢ ( 𝜑 → 𝑠 ∈ ran 𝐿 ) |
19 |
|
mclsppslem.11 |
⊢ ( 𝜑 → ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) |
20 |
|
mclsppslem.12 |
⊢ ( 𝜑 → ∀ 𝑧 ∀ 𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑤 ) ) ) ) ⊆ 𝑀 ) ) |
21 |
8 2
|
msubf |
⊢ ( 𝑠 ∈ ran 𝐿 → 𝑠 : 𝐸 ⟶ 𝐸 ) |
22 |
18 21
|
syl |
⊢ ( 𝜑 → 𝑠 : 𝐸 ⟶ 𝐸 ) |
23 |
|
eqid |
⊢ ( mAx ‘ 𝑇 ) = ( mAx ‘ 𝑇 ) |
24 |
|
eqid |
⊢ ( mStat ‘ 𝑇 ) = ( mStat ‘ 𝑇 ) |
25 |
23 24
|
maxsta |
⊢ ( 𝑇 ∈ mFS → ( mAx ‘ 𝑇 ) ⊆ ( mStat ‘ 𝑇 ) ) |
26 |
4 25
|
syl |
⊢ ( 𝜑 → ( mAx ‘ 𝑇 ) ⊆ ( mStat ‘ 𝑇 ) ) |
27 |
|
eqid |
⊢ ( mPreSt ‘ 𝑇 ) = ( mPreSt ‘ 𝑇 ) |
28 |
27 24
|
mstapst |
⊢ ( mStat ‘ 𝑇 ) ⊆ ( mPreSt ‘ 𝑇 ) |
29 |
26 28
|
sstrdi |
⊢ ( 𝜑 → ( mAx ‘ 𝑇 ) ⊆ ( mPreSt ‘ 𝑇 ) ) |
30 |
29 17
|
sseldd |
⊢ ( 𝜑 → 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mPreSt ‘ 𝑇 ) ) |
31 |
1 2 27
|
elmpst |
⊢ ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mPreSt ‘ 𝑇 ) ↔ ( ( 𝑚 ⊆ 𝐷 ∧ ◡ 𝑚 = 𝑚 ) ∧ ( 𝑜 ⊆ 𝐸 ∧ 𝑜 ∈ Fin ) ∧ 𝑝 ∈ 𝐸 ) ) |
32 |
30 31
|
sylib |
⊢ ( 𝜑 → ( ( 𝑚 ⊆ 𝐷 ∧ ◡ 𝑚 = 𝑚 ) ∧ ( 𝑜 ⊆ 𝐸 ∧ 𝑜 ∈ Fin ) ∧ 𝑝 ∈ 𝐸 ) ) |
33 |
32
|
simp3d |
⊢ ( 𝜑 → 𝑝 ∈ 𝐸 ) |
34 |
22 33
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑠 ‘ 𝑝 ) ∈ 𝐸 ) |
35 |
|
fvco3 |
⊢ ( ( 𝑠 : 𝐸 ⟶ 𝐸 ∧ 𝑝 ∈ 𝐸 ) → ( ( 𝑆 ∘ 𝑠 ) ‘ 𝑝 ) = ( 𝑆 ‘ ( 𝑠 ‘ 𝑝 ) ) ) |
36 |
22 33 35
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 ∘ 𝑠 ) ‘ 𝑝 ) = ( 𝑆 ‘ ( 𝑠 ‘ 𝑝 ) ) ) |
37 |
8
|
msubco |
⊢ ( ( 𝑆 ∈ ran 𝐿 ∧ 𝑠 ∈ ran 𝐿 ) → ( 𝑆 ∘ 𝑠 ) ∈ ran 𝐿 ) |
38 |
13 18 37
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ∘ 𝑠 ) ∈ ran 𝐿 ) |
39 |
8 2
|
msubf |
⊢ ( 𝑆 ∈ ran 𝐿 → 𝑆 : 𝐸 ⟶ 𝐸 ) |
40 |
13 39
|
syl |
⊢ ( 𝜑 → 𝑆 : 𝐸 ⟶ 𝐸 ) |
41 |
|
fco |
⊢ ( ( 𝑆 : 𝐸 ⟶ 𝐸 ∧ 𝑠 : 𝐸 ⟶ 𝐸 ) → ( 𝑆 ∘ 𝑠 ) : 𝐸 ⟶ 𝐸 ) |
42 |
40 22 41
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ∘ 𝑠 ) : 𝐸 ⟶ 𝐸 ) |
43 |
42
|
ffnd |
⊢ ( 𝜑 → ( 𝑆 ∘ 𝑠 ) Fn 𝐸 ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑜 ) → ( 𝑆 ∘ 𝑠 ) Fn 𝐸 ) |
45 |
22
|
ffund |
⊢ ( 𝜑 → Fun 𝑠 ) |
46 |
31
|
simp2bi |
⊢ ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mPreSt ‘ 𝑇 ) → ( 𝑜 ⊆ 𝐸 ∧ 𝑜 ∈ Fin ) ) |
47 |
30 46
|
syl |
⊢ ( 𝜑 → ( 𝑜 ⊆ 𝐸 ∧ 𝑜 ∈ Fin ) ) |
48 |
47
|
simpld |
⊢ ( 𝜑 → 𝑜 ⊆ 𝐸 ) |
49 |
9 2 10
|
mvhf |
⊢ ( 𝑇 ∈ mFS → 𝐻 : 𝑉 ⟶ 𝐸 ) |
50 |
|
frn |
⊢ ( 𝐻 : 𝑉 ⟶ 𝐸 → ran 𝐻 ⊆ 𝐸 ) |
51 |
4 49 50
|
3syl |
⊢ ( 𝜑 → ran 𝐻 ⊆ 𝐸 ) |
52 |
48 51
|
unssd |
⊢ ( 𝜑 → ( 𝑜 ∪ ran 𝐻 ) ⊆ 𝐸 ) |
53 |
22
|
fdmd |
⊢ ( 𝜑 → dom 𝑠 = 𝐸 ) |
54 |
52 53
|
sseqtrrd |
⊢ ( 𝜑 → ( 𝑜 ∪ ran 𝐻 ) ⊆ dom 𝑠 ) |
55 |
|
funimass3 |
⊢ ( ( Fun 𝑠 ∧ ( 𝑜 ∪ ran 𝐻 ) ⊆ dom 𝑠 ) → ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ↔ ( 𝑜 ∪ ran 𝐻 ) ⊆ ( ◡ 𝑠 “ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ) ) |
56 |
45 54 55
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ↔ ( 𝑜 ∪ ran 𝐻 ) ⊆ ( ◡ 𝑠 “ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ) ) |
57 |
19 56
|
mpbid |
⊢ ( 𝜑 → ( 𝑜 ∪ ran 𝐻 ) ⊆ ( ◡ 𝑠 “ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) ) |
58 |
|
cnvco |
⊢ ◡ ( 𝑆 ∘ 𝑠 ) = ( ◡ 𝑠 ∘ ◡ 𝑆 ) |
59 |
58
|
imaeq1i |
⊢ ( ◡ ( 𝑆 ∘ 𝑠 ) “ ( 𝐾 𝐶 𝐵 ) ) = ( ( ◡ 𝑠 ∘ ◡ 𝑆 ) “ ( 𝐾 𝐶 𝐵 ) ) |
60 |
|
imaco |
⊢ ( ( ◡ 𝑠 ∘ ◡ 𝑆 ) “ ( 𝐾 𝐶 𝐵 ) ) = ( ◡ 𝑠 “ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) |
61 |
59 60
|
eqtri |
⊢ ( ◡ ( 𝑆 ∘ 𝑠 ) “ ( 𝐾 𝐶 𝐵 ) ) = ( ◡ 𝑠 “ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) |
62 |
57 61
|
sseqtrrdi |
⊢ ( 𝜑 → ( 𝑜 ∪ ran 𝐻 ) ⊆ ( ◡ ( 𝑆 ∘ 𝑠 ) “ ( 𝐾 𝐶 𝐵 ) ) ) |
63 |
62
|
unssad |
⊢ ( 𝜑 → 𝑜 ⊆ ( ◡ ( 𝑆 ∘ 𝑠 ) “ ( 𝐾 𝐶 𝐵 ) ) ) |
64 |
63
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑜 ) → 𝑐 ∈ ( ◡ ( 𝑆 ∘ 𝑠 ) “ ( 𝐾 𝐶 𝐵 ) ) ) |
65 |
|
elpreima |
⊢ ( ( 𝑆 ∘ 𝑠 ) Fn 𝐸 → ( 𝑐 ∈ ( ◡ ( 𝑆 ∘ 𝑠 ) “ ( 𝐾 𝐶 𝐵 ) ) ↔ ( 𝑐 ∈ 𝐸 ∧ ( ( 𝑆 ∘ 𝑠 ) ‘ 𝑐 ) ∈ ( 𝐾 𝐶 𝐵 ) ) ) ) |
66 |
65
|
simplbda |
⊢ ( ( ( 𝑆 ∘ 𝑠 ) Fn 𝐸 ∧ 𝑐 ∈ ( ◡ ( 𝑆 ∘ 𝑠 ) “ ( 𝐾 𝐶 𝐵 ) ) ) → ( ( 𝑆 ∘ 𝑠 ) ‘ 𝑐 ) ∈ ( 𝐾 𝐶 𝐵 ) ) |
67 |
44 64 66
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑜 ) → ( ( 𝑆 ∘ 𝑠 ) ‘ 𝑐 ) ∈ ( 𝐾 𝐶 𝐵 ) ) |
68 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑉 ) → ( 𝑆 ∘ 𝑠 ) Fn 𝐸 ) |
69 |
62
|
unssbd |
⊢ ( 𝜑 → ran 𝐻 ⊆ ( ◡ ( 𝑆 ∘ 𝑠 ) “ ( 𝐾 𝐶 𝐵 ) ) ) |
70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑉 ) → ran 𝐻 ⊆ ( ◡ ( 𝑆 ∘ 𝑠 ) “ ( 𝐾 𝐶 𝐵 ) ) ) |
71 |
|
ffn |
⊢ ( 𝐻 : 𝑉 ⟶ 𝐸 → 𝐻 Fn 𝑉 ) |
72 |
4 49 71
|
3syl |
⊢ ( 𝜑 → 𝐻 Fn 𝑉 ) |
73 |
|
fnfvelrn |
⊢ ( ( 𝐻 Fn 𝑉 ∧ 𝑡 ∈ 𝑉 ) → ( 𝐻 ‘ 𝑡 ) ∈ ran 𝐻 ) |
74 |
72 73
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑉 ) → ( 𝐻 ‘ 𝑡 ) ∈ ran 𝐻 ) |
75 |
70 74
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑉 ) → ( 𝐻 ‘ 𝑡 ) ∈ ( ◡ ( 𝑆 ∘ 𝑠 ) “ ( 𝐾 𝐶 𝐵 ) ) ) |
76 |
|
elpreima |
⊢ ( ( 𝑆 ∘ 𝑠 ) Fn 𝐸 → ( ( 𝐻 ‘ 𝑡 ) ∈ ( ◡ ( 𝑆 ∘ 𝑠 ) “ ( 𝐾 𝐶 𝐵 ) ) ↔ ( ( 𝐻 ‘ 𝑡 ) ∈ 𝐸 ∧ ( ( 𝑆 ∘ 𝑠 ) ‘ ( 𝐻 ‘ 𝑡 ) ) ∈ ( 𝐾 𝐶 𝐵 ) ) ) ) |
77 |
76
|
simplbda |
⊢ ( ( ( 𝑆 ∘ 𝑠 ) Fn 𝐸 ∧ ( 𝐻 ‘ 𝑡 ) ∈ ( ◡ ( 𝑆 ∘ 𝑠 ) “ ( 𝐾 𝐶 𝐵 ) ) ) → ( ( 𝑆 ∘ 𝑠 ) ‘ ( 𝐻 ‘ 𝑡 ) ) ∈ ( 𝐾 𝐶 𝐵 ) ) |
78 |
68 75 77
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑉 ) → ( ( 𝑆 ∘ 𝑠 ) ‘ ( 𝐻 ‘ 𝑡 ) ) ∈ ( 𝐾 𝐶 𝐵 ) ) |
79 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → 𝑠 : 𝐸 ⟶ 𝐸 ) |
80 |
4 49
|
syl |
⊢ ( 𝜑 → 𝐻 : 𝑉 ⟶ 𝐸 ) |
81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → 𝐻 : 𝑉 ⟶ 𝐸 ) |
82 |
32
|
simp1d |
⊢ ( 𝜑 → ( 𝑚 ⊆ 𝐷 ∧ ◡ 𝑚 = 𝑚 ) ) |
83 |
82
|
simpld |
⊢ ( 𝜑 → 𝑚 ⊆ 𝐷 ) |
84 |
9 1
|
mdvval |
⊢ 𝐷 = ( ( 𝑉 × 𝑉 ) ∖ I ) |
85 |
|
difss |
⊢ ( ( 𝑉 × 𝑉 ) ∖ I ) ⊆ ( 𝑉 × 𝑉 ) |
86 |
84 85
|
eqsstri |
⊢ 𝐷 ⊆ ( 𝑉 × 𝑉 ) |
87 |
83 86
|
sstrdi |
⊢ ( 𝜑 → 𝑚 ⊆ ( 𝑉 × 𝑉 ) ) |
88 |
87
|
ssbrd |
⊢ ( 𝜑 → ( 𝑐 𝑚 𝑑 → 𝑐 ( 𝑉 × 𝑉 ) 𝑑 ) ) |
89 |
88
|
imp |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → 𝑐 ( 𝑉 × 𝑉 ) 𝑑 ) |
90 |
|
brxp |
⊢ ( 𝑐 ( 𝑉 × 𝑉 ) 𝑑 ↔ ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) |
91 |
89 90
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( 𝑐 ∈ 𝑉 ∧ 𝑑 ∈ 𝑉 ) ) |
92 |
91
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → 𝑐 ∈ 𝑉 ) |
93 |
81 92
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( 𝐻 ‘ 𝑐 ) ∈ 𝐸 ) |
94 |
|
fvco3 |
⊢ ( ( 𝑠 : 𝐸 ⟶ 𝐸 ∧ ( 𝐻 ‘ 𝑐 ) ∈ 𝐸 ) → ( ( 𝑆 ∘ 𝑠 ) ‘ ( 𝐻 ‘ 𝑐 ) ) = ( 𝑆 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) ) |
95 |
79 93 94
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( ( 𝑆 ∘ 𝑠 ) ‘ ( 𝐻 ‘ 𝑐 ) ) = ( 𝑆 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) ) |
96 |
95
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( 𝑊 ‘ ( ( 𝑆 ∘ 𝑠 ) ‘ ( 𝐻 ‘ 𝑐 ) ) ) = ( 𝑊 ‘ ( 𝑆 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) ) ) |
97 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → 𝑇 ∈ mFS ) |
98 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → 𝑆 ∈ ran 𝐿 ) |
99 |
79 93
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ∈ 𝐸 ) |
100 |
8 2 11 10
|
msubvrs |
⊢ ( ( 𝑇 ∈ mFS ∧ 𝑆 ∈ ran 𝐿 ∧ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ∈ 𝐸 ) → ( 𝑊 ‘ ( 𝑆 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) ) = ∪ 𝑢 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑢 ) ) ) ) |
101 |
97 98 99 100
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( 𝑊 ‘ ( 𝑆 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) ) = ∪ 𝑢 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑢 ) ) ) ) |
102 |
96 101
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( 𝑊 ‘ ( ( 𝑆 ∘ 𝑠 ) ‘ ( 𝐻 ‘ 𝑐 ) ) ) = ∪ 𝑢 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑢 ) ) ) ) |
103 |
102
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( 𝑎 ∈ ( 𝑊 ‘ ( ( 𝑆 ∘ 𝑠 ) ‘ ( 𝐻 ‘ 𝑐 ) ) ) ↔ 𝑎 ∈ ∪ 𝑢 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑢 ) ) ) ) ) |
104 |
|
eliun |
⊢ ( 𝑎 ∈ ∪ 𝑢 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑢 ) ) ) ↔ ∃ 𝑢 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) 𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑢 ) ) ) ) |
105 |
103 104
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( 𝑎 ∈ ( 𝑊 ‘ ( ( 𝑆 ∘ 𝑠 ) ‘ ( 𝐻 ‘ 𝑐 ) ) ) ↔ ∃ 𝑢 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) 𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑢 ) ) ) ) ) |
106 |
91
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → 𝑑 ∈ 𝑉 ) |
107 |
81 106
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( 𝐻 ‘ 𝑑 ) ∈ 𝐸 ) |
108 |
|
fvco3 |
⊢ ( ( 𝑠 : 𝐸 ⟶ 𝐸 ∧ ( 𝐻 ‘ 𝑑 ) ∈ 𝐸 ) → ( ( 𝑆 ∘ 𝑠 ) ‘ ( 𝐻 ‘ 𝑑 ) ) = ( 𝑆 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ) |
109 |
79 107 108
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( ( 𝑆 ∘ 𝑠 ) ‘ ( 𝐻 ‘ 𝑑 ) ) = ( 𝑆 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ) |
110 |
109
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( 𝑊 ‘ ( ( 𝑆 ∘ 𝑠 ) ‘ ( 𝐻 ‘ 𝑑 ) ) ) = ( 𝑊 ‘ ( 𝑆 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ) ) |
111 |
79 107
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ∈ 𝐸 ) |
112 |
8 2 11 10
|
msubvrs |
⊢ ( ( 𝑇 ∈ mFS ∧ 𝑆 ∈ ran 𝐿 ∧ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ∈ 𝐸 ) → ( 𝑊 ‘ ( 𝑆 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ) = ∪ 𝑣 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ) ) |
113 |
97 98 111 112
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( 𝑊 ‘ ( 𝑆 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ) = ∪ 𝑣 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ) ) |
114 |
110 113
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( 𝑊 ‘ ( ( 𝑆 ∘ 𝑠 ) ‘ ( 𝐻 ‘ 𝑑 ) ) ) = ∪ 𝑣 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ) ) |
115 |
114
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( 𝑏 ∈ ( 𝑊 ‘ ( ( 𝑆 ∘ 𝑠 ) ‘ ( 𝐻 ‘ 𝑑 ) ) ) ↔ 𝑏 ∈ ∪ 𝑣 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ) ) ) |
116 |
|
eliun |
⊢ ( 𝑏 ∈ ∪ 𝑣 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ) ↔ ∃ 𝑣 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ) ) |
117 |
115 116
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( 𝑏 ∈ ( 𝑊 ‘ ( ( 𝑆 ∘ 𝑠 ) ‘ ( 𝐻 ‘ 𝑑 ) ) ) ↔ ∃ 𝑣 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ) ) ) |
118 |
105 117
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( ( 𝑎 ∈ ( 𝑊 ‘ ( ( 𝑆 ∘ 𝑠 ) ‘ ( 𝐻 ‘ 𝑐 ) ) ) ∧ 𝑏 ∈ ( 𝑊 ‘ ( ( 𝑆 ∘ 𝑠 ) ‘ ( 𝐻 ‘ 𝑑 ) ) ) ) ↔ ( ∃ 𝑢 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) 𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑢 ) ) ) ∧ ∃ 𝑣 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ) ) ) ) |
119 |
|
reeanv |
⊢ ( ∃ 𝑢 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) ∃ 𝑣 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ( 𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑢 ) ) ) ∧ 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ) ) ↔ ( ∃ 𝑢 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) 𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑢 ) ) ) ∧ ∃ 𝑣 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ) ) ) |
120 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) ∧ ( 𝑢 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) ∧ 𝑣 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ) ) → 𝜑 ) |
121 |
|
brxp |
⊢ ( 𝑢 ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ) 𝑣 ↔ ( 𝑢 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) ∧ 𝑣 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ) ) |
122 |
|
breq12 |
⊢ ( ( 𝑧 = 𝑐 ∧ 𝑤 = 𝑑 ) → ( 𝑧 𝑚 𝑤 ↔ 𝑐 𝑚 𝑑 ) ) |
123 |
|
simpl |
⊢ ( ( 𝑧 = 𝑐 ∧ 𝑤 = 𝑑 ) → 𝑧 = 𝑐 ) |
124 |
123
|
fveq2d |
⊢ ( ( 𝑧 = 𝑐 ∧ 𝑤 = 𝑑 ) → ( 𝐻 ‘ 𝑧 ) = ( 𝐻 ‘ 𝑐 ) ) |
125 |
124
|
fveq2d |
⊢ ( ( 𝑧 = 𝑐 ∧ 𝑤 = 𝑑 ) → ( 𝑠 ‘ ( 𝐻 ‘ 𝑧 ) ) = ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) |
126 |
125
|
fveq2d |
⊢ ( ( 𝑧 = 𝑐 ∧ 𝑤 = 𝑑 ) → ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑧 ) ) ) = ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) ) |
127 |
|
simpr |
⊢ ( ( 𝑧 = 𝑐 ∧ 𝑤 = 𝑑 ) → 𝑤 = 𝑑 ) |
128 |
127
|
fveq2d |
⊢ ( ( 𝑧 = 𝑐 ∧ 𝑤 = 𝑑 ) → ( 𝐻 ‘ 𝑤 ) = ( 𝐻 ‘ 𝑑 ) ) |
129 |
128
|
fveq2d |
⊢ ( ( 𝑧 = 𝑐 ∧ 𝑤 = 𝑑 ) → ( 𝑠 ‘ ( 𝐻 ‘ 𝑤 ) ) = ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) |
130 |
129
|
fveq2d |
⊢ ( ( 𝑧 = 𝑐 ∧ 𝑤 = 𝑑 ) → ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑤 ) ) ) = ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ) |
131 |
126 130
|
xpeq12d |
⊢ ( ( 𝑧 = 𝑐 ∧ 𝑤 = 𝑑 ) → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑤 ) ) ) ) = ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ) ) |
132 |
131
|
sseq1d |
⊢ ( ( 𝑧 = 𝑐 ∧ 𝑤 = 𝑑 ) → ( ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑤 ) ) ) ) ⊆ 𝑀 ↔ ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ) ⊆ 𝑀 ) ) |
133 |
122 132
|
imbi12d |
⊢ ( ( 𝑧 = 𝑐 ∧ 𝑤 = 𝑑 ) → ( ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑤 ) ) ) ) ⊆ 𝑀 ) ↔ ( 𝑐 𝑚 𝑑 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ) ⊆ 𝑀 ) ) ) |
134 |
133
|
spc2gv |
⊢ ( ( 𝑐 ∈ V ∧ 𝑑 ∈ V ) → ( ∀ 𝑧 ∀ 𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑤 ) ) ) ) ⊆ 𝑀 ) → ( 𝑐 𝑚 𝑑 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ) ⊆ 𝑀 ) ) ) |
135 |
134
|
el2v |
⊢ ( ∀ 𝑧 ∀ 𝑤 ( 𝑧 𝑚 𝑤 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑧 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑤 ) ) ) ) ⊆ 𝑀 ) → ( 𝑐 𝑚 𝑑 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ) ⊆ 𝑀 ) ) |
136 |
20 135
|
syl |
⊢ ( 𝜑 → ( 𝑐 𝑚 𝑑 → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ) ⊆ 𝑀 ) ) |
137 |
136
|
imp |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ) ⊆ 𝑀 ) |
138 |
137
|
ssbrd |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( 𝑢 ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) × ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ) 𝑣 → 𝑢 𝑀 𝑣 ) ) |
139 |
121 138
|
syl5bir |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( ( 𝑢 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) ∧ 𝑣 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ) → 𝑢 𝑀 𝑣 ) ) |
140 |
139
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) ∧ ( 𝑢 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) ∧ 𝑣 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ) ) → 𝑢 𝑀 𝑣 ) |
141 |
|
vex |
⊢ 𝑢 ∈ V |
142 |
|
vex |
⊢ 𝑣 ∈ V |
143 |
|
breq12 |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( 𝑥 𝑀 𝑦 ↔ 𝑢 𝑀 𝑣 ) ) |
144 |
|
simpl |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑥 = 𝑢 ) |
145 |
144
|
fveq2d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑢 ) ) |
146 |
145
|
fveq2d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( 𝑆 ‘ ( 𝐻 ‘ 𝑥 ) ) = ( 𝑆 ‘ ( 𝐻 ‘ 𝑢 ) ) ) |
147 |
146
|
fveq2d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑥 ) ) ) = ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑢 ) ) ) ) |
148 |
147
|
eleq2d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( 𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ↔ 𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑢 ) ) ) ) ) |
149 |
|
simpr |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑦 = 𝑣 ) |
150 |
149
|
fveq2d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ 𝑣 ) ) |
151 |
150
|
fveq2d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( 𝑆 ‘ ( 𝐻 ‘ 𝑦 ) ) = ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ) |
152 |
151
|
fveq2d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑦 ) ) ) = ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ) ) |
153 |
152
|
eleq2d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ↔ 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ) ) ) |
154 |
143 148 153
|
3anbi123d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ( 𝑥 𝑀 𝑦 ∧ 𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ∧ 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ↔ ( 𝑢 𝑀 𝑣 ∧ 𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑢 ) ) ) ∧ 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ) ) ) ) |
155 |
154
|
anbi2d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ( 𝜑 ∧ ( 𝑥 𝑀 𝑦 ∧ 𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ∧ 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ) ↔ ( 𝜑 ∧ ( 𝑢 𝑀 𝑣 ∧ 𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑢 ) ) ) ∧ 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ) ) ) ) ) |
156 |
155
|
imbi1d |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( ( ( 𝜑 ∧ ( 𝑥 𝑀 𝑦 ∧ 𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ∧ 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ) → 𝑎 𝐾 𝑏 ) ↔ ( ( 𝜑 ∧ ( 𝑢 𝑀 𝑣 ∧ 𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑢 ) ) ) ∧ 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ) ) ) → 𝑎 𝐾 𝑏 ) ) ) |
157 |
141 142 156 16
|
vtocl2 |
⊢ ( ( 𝜑 ∧ ( 𝑢 𝑀 𝑣 ∧ 𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑢 ) ) ) ∧ 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ) ) ) → 𝑎 𝐾 𝑏 ) |
158 |
157
|
3exp2 |
⊢ ( 𝜑 → ( 𝑢 𝑀 𝑣 → ( 𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑢 ) ) ) → ( 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ) → 𝑎 𝐾 𝑏 ) ) ) ) |
159 |
158
|
imp4b |
⊢ ( ( 𝜑 ∧ 𝑢 𝑀 𝑣 ) → ( ( 𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑢 ) ) ) ∧ 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ) ) → 𝑎 𝐾 𝑏 ) ) |
160 |
120 140 159
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) ∧ ( 𝑢 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) ∧ 𝑣 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ) ) → ( ( 𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑢 ) ) ) ∧ 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ) ) → 𝑎 𝐾 𝑏 ) ) |
161 |
160
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( ∃ 𝑢 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) ∃ 𝑣 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) ( 𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑢 ) ) ) ∧ 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ) ) → 𝑎 𝐾 𝑏 ) ) |
162 |
119 161
|
syl5bir |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( ( ∃ 𝑢 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑐 ) ) ) 𝑎 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑢 ) ) ) ∧ ∃ 𝑣 ∈ ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑑 ) ) ) 𝑏 ∈ ( 𝑊 ‘ ( 𝑆 ‘ ( 𝐻 ‘ 𝑣 ) ) ) ) → 𝑎 𝐾 𝑏 ) ) |
163 |
118 162
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑐 𝑚 𝑑 ) → ( ( 𝑎 ∈ ( 𝑊 ‘ ( ( 𝑆 ∘ 𝑠 ) ‘ ( 𝐻 ‘ 𝑐 ) ) ) ∧ 𝑏 ∈ ( 𝑊 ‘ ( ( 𝑆 ∘ 𝑠 ) ‘ ( 𝐻 ‘ 𝑑 ) ) ) ) → 𝑎 𝐾 𝑏 ) ) |
164 |
163
|
exp4b |
⊢ ( 𝜑 → ( 𝑐 𝑚 𝑑 → ( 𝑎 ∈ ( 𝑊 ‘ ( ( 𝑆 ∘ 𝑠 ) ‘ ( 𝐻 ‘ 𝑐 ) ) ) → ( 𝑏 ∈ ( 𝑊 ‘ ( ( 𝑆 ∘ 𝑠 ) ‘ ( 𝐻 ‘ 𝑑 ) ) ) → 𝑎 𝐾 𝑏 ) ) ) ) |
165 |
164
|
3imp2 |
⊢ ( ( 𝜑 ∧ ( 𝑐 𝑚 𝑑 ∧ 𝑎 ∈ ( 𝑊 ‘ ( ( 𝑆 ∘ 𝑠 ) ‘ ( 𝐻 ‘ 𝑐 ) ) ) ∧ 𝑏 ∈ ( 𝑊 ‘ ( ( 𝑆 ∘ 𝑠 ) ‘ ( 𝐻 ‘ 𝑑 ) ) ) ) ) → 𝑎 𝐾 𝑏 ) |
166 |
1 2 3 4 5 6 23 8 9 10 11 17 38 67 78 165
|
mclsax |
⊢ ( 𝜑 → ( ( 𝑆 ∘ 𝑠 ) ‘ 𝑝 ) ∈ ( 𝐾 𝐶 𝐵 ) ) |
167 |
36 166
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝑠 ‘ 𝑝 ) ) ∈ ( 𝐾 𝐶 𝐵 ) ) |
168 |
40
|
ffnd |
⊢ ( 𝜑 → 𝑆 Fn 𝐸 ) |
169 |
|
elpreima |
⊢ ( 𝑆 Fn 𝐸 → ( ( 𝑠 ‘ 𝑝 ) ∈ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ↔ ( ( 𝑠 ‘ 𝑝 ) ∈ 𝐸 ∧ ( 𝑆 ‘ ( 𝑠 ‘ 𝑝 ) ) ∈ ( 𝐾 𝐶 𝐵 ) ) ) ) |
170 |
168 169
|
syl |
⊢ ( 𝜑 → ( ( 𝑠 ‘ 𝑝 ) ∈ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ↔ ( ( 𝑠 ‘ 𝑝 ) ∈ 𝐸 ∧ ( 𝑆 ‘ ( 𝑠 ‘ 𝑝 ) ) ∈ ( 𝐾 𝐶 𝐵 ) ) ) ) |
171 |
34 167 170
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑠 ‘ 𝑝 ) ∈ ( ◡ 𝑆 “ ( 𝐾 𝐶 𝐵 ) ) ) |