| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mclspps.d |
|
| 2 |
|
mclspps.e |
|
| 3 |
|
mclspps.c |
|
| 4 |
|
mclspps.1 |
|
| 5 |
|
mclspps.2 |
|
| 6 |
|
mclspps.3 |
|
| 7 |
|
mclspps.j |
|
| 8 |
|
mclspps.l |
|
| 9 |
|
mclspps.v |
|
| 10 |
|
mclspps.h |
|
| 11 |
|
mclspps.w |
|
| 12 |
|
mclspps.4 |
|
| 13 |
|
mclspps.5 |
|
| 14 |
|
mclspps.6 |
|
| 15 |
|
mclspps.7 |
|
| 16 |
|
mclspps.8 |
|
| 17 |
|
mclsppslem.9 |
|
| 18 |
|
mclsppslem.10 |
|
| 19 |
|
mclsppslem.11 |
|
| 20 |
|
mclsppslem.12 |
|
| 21 |
8 2
|
msubf |
|
| 22 |
18 21
|
syl |
|
| 23 |
|
eqid |
|
| 24 |
|
eqid |
|
| 25 |
23 24
|
maxsta |
|
| 26 |
4 25
|
syl |
|
| 27 |
|
eqid |
|
| 28 |
27 24
|
mstapst |
|
| 29 |
26 28
|
sstrdi |
|
| 30 |
29 17
|
sseldd |
|
| 31 |
1 2 27
|
elmpst |
|
| 32 |
30 31
|
sylib |
|
| 33 |
32
|
simp3d |
|
| 34 |
22 33
|
ffvelcdmd |
|
| 35 |
|
fvco3 |
|
| 36 |
22 33 35
|
syl2anc |
|
| 37 |
8
|
msubco |
|
| 38 |
13 18 37
|
syl2anc |
|
| 39 |
8 2
|
msubf |
|
| 40 |
13 39
|
syl |
|
| 41 |
|
fco |
|
| 42 |
40 22 41
|
syl2anc |
|
| 43 |
42
|
ffnd |
|
| 44 |
43
|
adantr |
|
| 45 |
22
|
ffund |
|
| 46 |
31
|
simp2bi |
|
| 47 |
30 46
|
syl |
|
| 48 |
47
|
simpld |
|
| 49 |
9 2 10
|
mvhf |
|
| 50 |
|
frn |
|
| 51 |
4 49 50
|
3syl |
|
| 52 |
48 51
|
unssd |
|
| 53 |
22
|
fdmd |
|
| 54 |
52 53
|
sseqtrrd |
|
| 55 |
|
funimass3 |
|
| 56 |
45 54 55
|
syl2anc |
|
| 57 |
19 56
|
mpbid |
|
| 58 |
|
cnvco |
|
| 59 |
58
|
imaeq1i |
|
| 60 |
|
imaco |
|
| 61 |
59 60
|
eqtri |
|
| 62 |
57 61
|
sseqtrrdi |
|
| 63 |
62
|
unssad |
|
| 64 |
63
|
sselda |
|
| 65 |
|
elpreima |
|
| 66 |
65
|
simplbda |
|
| 67 |
44 64 66
|
syl2anc |
|
| 68 |
43
|
adantr |
|
| 69 |
62
|
unssbd |
|
| 70 |
69
|
adantr |
|
| 71 |
|
ffn |
|
| 72 |
4 49 71
|
3syl |
|
| 73 |
|
fnfvelrn |
|
| 74 |
72 73
|
sylan |
|
| 75 |
70 74
|
sseldd |
|
| 76 |
|
elpreima |
|
| 77 |
76
|
simplbda |
|
| 78 |
68 75 77
|
syl2anc |
|
| 79 |
22
|
adantr |
|
| 80 |
4 49
|
syl |
|
| 81 |
80
|
adantr |
|
| 82 |
32
|
simp1d |
|
| 83 |
82
|
simpld |
|
| 84 |
9 1
|
mdvval |
|
| 85 |
|
difss |
|
| 86 |
84 85
|
eqsstri |
|
| 87 |
83 86
|
sstrdi |
|
| 88 |
87
|
ssbrd |
|
| 89 |
88
|
imp |
|
| 90 |
|
brxp |
|
| 91 |
89 90
|
sylib |
|
| 92 |
91
|
simpld |
|
| 93 |
81 92
|
ffvelcdmd |
|
| 94 |
|
fvco3 |
|
| 95 |
79 93 94
|
syl2anc |
|
| 96 |
95
|
fveq2d |
|
| 97 |
4
|
adantr |
|
| 98 |
13
|
adantr |
|
| 99 |
79 93
|
ffvelcdmd |
|
| 100 |
8 2 11 10
|
msubvrs |
|
| 101 |
97 98 99 100
|
syl3anc |
|
| 102 |
96 101
|
eqtrd |
|
| 103 |
102
|
eleq2d |
|
| 104 |
|
eliun |
|
| 105 |
103 104
|
bitrdi |
|
| 106 |
91
|
simprd |
|
| 107 |
81 106
|
ffvelcdmd |
|
| 108 |
|
fvco3 |
|
| 109 |
79 107 108
|
syl2anc |
|
| 110 |
109
|
fveq2d |
|
| 111 |
79 107
|
ffvelcdmd |
|
| 112 |
8 2 11 10
|
msubvrs |
|
| 113 |
97 98 111 112
|
syl3anc |
|
| 114 |
110 113
|
eqtrd |
|
| 115 |
114
|
eleq2d |
|
| 116 |
|
eliun |
|
| 117 |
115 116
|
bitrdi |
|
| 118 |
105 117
|
anbi12d |
|
| 119 |
|
reeanv |
|
| 120 |
|
simpll |
|
| 121 |
|
brxp |
|
| 122 |
|
breq12 |
|
| 123 |
|
simpl |
|
| 124 |
123
|
fveq2d |
|
| 125 |
124
|
fveq2d |
|
| 126 |
125
|
fveq2d |
|
| 127 |
|
simpr |
|
| 128 |
127
|
fveq2d |
|
| 129 |
128
|
fveq2d |
|
| 130 |
129
|
fveq2d |
|
| 131 |
126 130
|
xpeq12d |
|
| 132 |
131
|
sseq1d |
|
| 133 |
122 132
|
imbi12d |
|
| 134 |
133
|
spc2gv |
|
| 135 |
134
|
el2v |
|
| 136 |
20 135
|
syl |
|
| 137 |
136
|
imp |
|
| 138 |
137
|
ssbrd |
|
| 139 |
121 138
|
biimtrrid |
|
| 140 |
139
|
imp |
|
| 141 |
|
vex |
|
| 142 |
|
vex |
|
| 143 |
|
breq12 |
|
| 144 |
|
simpl |
|
| 145 |
144
|
fveq2d |
|
| 146 |
145
|
fveq2d |
|
| 147 |
146
|
fveq2d |
|
| 148 |
147
|
eleq2d |
|
| 149 |
|
simpr |
|
| 150 |
149
|
fveq2d |
|
| 151 |
150
|
fveq2d |
|
| 152 |
151
|
fveq2d |
|
| 153 |
152
|
eleq2d |
|
| 154 |
143 148 153
|
3anbi123d |
|
| 155 |
154
|
anbi2d |
|
| 156 |
155
|
imbi1d |
|
| 157 |
141 142 156 16
|
vtocl2 |
|
| 158 |
157
|
3exp2 |
|
| 159 |
158
|
imp4b |
|
| 160 |
120 140 159
|
syl2anc |
|
| 161 |
160
|
rexlimdvva |
|
| 162 |
119 161
|
biimtrrid |
|
| 163 |
118 162
|
sylbid |
|
| 164 |
163
|
exp4b |
|
| 165 |
164
|
3imp2 |
|
| 166 |
1 2 3 4 5 6 23 8 9 10 11 17 38 67 78 165
|
mclsax |
|
| 167 |
36 166
|
eqeltrrd |
|
| 168 |
40
|
ffnd |
|
| 169 |
|
elpreima |
|
| 170 |
168 169
|
syl |
|
| 171 |
34 167 170
|
mpbir2and |
|