Metamath Proof Explorer


Theorem msubf

Description: A substitution is a function. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses msubco.s S = mSubst T
msubf.e E = mEx T
Assertion msubf F ran S F : E E

Proof

Step Hyp Ref Expression
1 msubco.s S = mSubst T
2 msubf.e E = mEx T
3 n0i F ran S ¬ ran S =
4 1 rnfvprc ¬ T V ran S =
5 3 4 nsyl2 F ran S T V
6 eqid mVR T = mVR T
7 eqid mREx T = mREx T
8 6 7 1 2 msubff T V S : mREx T 𝑝𝑚 mVR T E E
9 frn S : mREx T 𝑝𝑚 mVR T E E ran S E E
10 5 8 9 3syl F ran S ran S E E
11 id F ran S F ran S
12 10 11 sseldd F ran S F E E
13 elmapi F E E F : E E
14 12 13 syl F ran S F : E E