Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Mario Carneiro
Metamath formal systems
msubf
Next ⟩
mvhfval
Metamath Proof Explorer
Ascii
Unicode
Theorem
msubf
Description:
A substitution is a function.
(Contributed by
Mario Carneiro
, 18-Jul-2016)
Ref
Expression
Hypotheses
msubco.s
⊢
S
=
mSubst
⁡
T
msubf.e
⊢
E
=
mEx
⁡
T
Assertion
msubf
⊢
F
∈
ran
⁡
S
→
F
:
E
⟶
E
Proof
Step
Hyp
Ref
Expression
1
msubco.s
⊢
S
=
mSubst
⁡
T
2
msubf.e
⊢
E
=
mEx
⁡
T
3
n0i
⊢
F
∈
ran
⁡
S
→
¬
ran
⁡
S
=
∅
4
1
rnfvprc
⊢
¬
T
∈
V
→
ran
⁡
S
=
∅
5
3
4
nsyl2
⊢
F
∈
ran
⁡
S
→
T
∈
V
6
eqid
⊢
mVR
⁡
T
=
mVR
⁡
T
7
eqid
⊢
mREx
⁡
T
=
mREx
⁡
T
8
6
7
1
2
msubff
⊢
T
∈
V
→
S
:
mREx
⁡
T
↑
𝑝𝑚
mVR
⁡
T
⟶
E
E
9
frn
⊢
S
:
mREx
⁡
T
↑
𝑝𝑚
mVR
⁡
T
⟶
E
E
→
ran
⁡
S
⊆
E
E
10
5
8
9
3syl
⊢
F
∈
ran
⁡
S
→
ran
⁡
S
⊆
E
E
11
id
⊢
F
∈
ran
⁡
S
→
F
∈
ran
⁡
S
12
10
11
sseldd
⊢
F
∈
ran
⁡
S
→
F
∈
E
E
13
elmapi
⊢
F
∈
E
E
→
F
:
E
⟶
E
14
12
13
syl
⊢
F
∈
ran
⁡
S
→
F
:
E
⟶
E