Metamath Proof Explorer


Theorem msubf

Description: A substitution is a function. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses msubco.s S=mSubstT
msubf.e E=mExT
Assertion msubf FranSF:EE

Proof

Step Hyp Ref Expression
1 msubco.s S=mSubstT
2 msubf.e E=mExT
3 n0i FranS¬ranS=
4 1 rnfvprc ¬TVranS=
5 3 4 nsyl2 FranSTV
6 eqid mVRT=mVRT
7 eqid mRExT=mRExT
8 6 7 1 2 msubff TVS:mRExT𝑝𝑚mVRTEE
9 frn S:mRExT𝑝𝑚mVRTEEranSEE
10 5 8 9 3syl FranSranSEE
11 id FranSFranS
12 10 11 sseldd FranSFEE
13 elmapi FEEF:EE
14 12 13 syl FranSF:EE