| Step |
Hyp |
Ref |
Expression |
| 1 |
|
msubco.s |
|- S = ( mSubst ` T ) |
| 2 |
|
msubf.e |
|- E = ( mEx ` T ) |
| 3 |
|
n0i |
|- ( F e. ran S -> -. ran S = (/) ) |
| 4 |
1
|
rnfvprc |
|- ( -. T e. _V -> ran S = (/) ) |
| 5 |
3 4
|
nsyl2 |
|- ( F e. ran S -> T e. _V ) |
| 6 |
|
eqid |
|- ( mVR ` T ) = ( mVR ` T ) |
| 7 |
|
eqid |
|- ( mREx ` T ) = ( mREx ` T ) |
| 8 |
6 7 1 2
|
msubff |
|- ( T e. _V -> S : ( ( mREx ` T ) ^pm ( mVR ` T ) ) --> ( E ^m E ) ) |
| 9 |
|
frn |
|- ( S : ( ( mREx ` T ) ^pm ( mVR ` T ) ) --> ( E ^m E ) -> ran S C_ ( E ^m E ) ) |
| 10 |
5 8 9
|
3syl |
|- ( F e. ran S -> ran S C_ ( E ^m E ) ) |
| 11 |
|
id |
|- ( F e. ran S -> F e. ran S ) |
| 12 |
10 11
|
sseldd |
|- ( F e. ran S -> F e. ( E ^m E ) ) |
| 13 |
|
elmapi |
|- ( F e. ( E ^m E ) -> F : E --> E ) |
| 14 |
12 13
|
syl |
|- ( F e. ran S -> F : E --> E ) |