Metamath Proof Explorer


Theorem mclsax

Description: The closure is closed under axiom application. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclsval.d D = mDV T
mclsval.e E = mEx T
mclsval.c C = mCls T
mclsval.1 φ T mFS
mclsval.2 φ K D
mclsval.3 φ B E
mclsax.a A = mAx T
mclsax.l L = mSubst T
mclsax.v V = mVR T
mclsax.h H = mVH T
mclsax.w W = mVars T
mclsax.4 φ M O P A
mclsax.5 φ S ran L
mclsax.6 φ x O S x K C B
mclsax.7 φ v V S H v K C B
mclsax.8 φ x M y a W S H x b W S H y a K b
Assertion mclsax φ S P K C B

Proof

Step Hyp Ref Expression
1 mclsval.d D = mDV T
2 mclsval.e E = mEx T
3 mclsval.c C = mCls T
4 mclsval.1 φ T mFS
5 mclsval.2 φ K D
6 mclsval.3 φ B E
7 mclsax.a A = mAx T
8 mclsax.l L = mSubst T
9 mclsax.v V = mVR T
10 mclsax.h H = mVH T
11 mclsax.w W = mVars T
12 mclsax.4 φ M O P A
13 mclsax.5 φ S ran L
14 mclsax.6 φ x O S x K C B
15 mclsax.7 φ v V S H v K C B
16 mclsax.8 φ x M y a W S H x b W S H y a K b
17 abid c c | B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c
18 intss1 c c | B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c c | B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c c
19 17 18 sylbir B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c c | B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c c
20 1 2 3 4 5 6 10 7 8 11 mclsval φ K C B = c | B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c
21 20 sseq1d φ K C B c c | B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c c
22 19 21 syl5ibr φ B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c K C B c
23 sstr2 s o ran H K C B K C B c s o ran H c
24 23 com12 K C B c s o ran H K C B s o ran H c
25 24 anim1d K C B c s o ran H K C B x y x m y W s H x × W s H y K s o ran H c x y x m y W s H x × W s H y K
26 25 imim1d K C B c s o ran H c x y x m y W s H x × W s H y K s p c s o ran H K C B x y x m y W s H x × W s H y K s p c
27 26 ralimdv K C B c s ran L s o ran H c x y x m y W s H x × W s H y K s p c s ran L s o ran H K C B x y x m y W s H x × W s H y K s p c
28 27 imim2d K C B c m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c m o p A s ran L s o ran H K C B x y x m y W s H x × W s H y K s p c
29 28 alimdv K C B c p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c p m o p A s ran L s o ran H K C B x y x m y W s H x × W s H y K s p c
30 29 2alimdv K C B c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c m o p m o p A s ran L s o ran H K C B x y x m y W s H x × W s H y K s p c
31 30 com12 m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c K C B c m o p m o p A s ran L s o ran H K C B x y x m y W s H x × W s H y K s p c
32 31 adantl B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c K C B c m o p m o p A s ran L s o ran H K C B x y x m y W s H x × W s H y K s p c
33 22 32 sylcom φ B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c m o p m o p A s ran L s o ran H K C B x y x m y W s H x × W s H y K s p c
34 eqid mPreSt T = mPreSt T
35 eqid mStat T = mStat T
36 34 35 mstapst mStat T mPreSt T
37 7 35 maxsta T mFS A mStat T
38 4 37 syl φ A mStat T
39 38 12 sseldd φ M O P mStat T
40 36 39 sselid φ M O P mPreSt T
41 34 mpstrcl M O P mPreSt T M V O V P V
42 simp1 m = M o = O p = P m = M
43 simp2 m = M o = O p = P o = O
44 simp3 m = M o = O p = P p = P
45 42 43 44 oteq123d m = M o = O p = P m o p = M O P
46 45 eleq1d m = M o = O p = P m o p A M O P A
47 43 uneq1d m = M o = O p = P o ran H = O ran H
48 47 imaeq2d m = M o = O p = P s o ran H = s O ran H
49 48 sseq1d m = M o = O p = P s o ran H K C B s O ran H K C B
50 42 breqd m = M o = O p = P x m y x M y
51 50 imbi1d m = M o = O p = P x m y W s H x × W s H y K x M y W s H x × W s H y K
52 51 2albidv m = M o = O p = P x y x m y W s H x × W s H y K x y x M y W s H x × W s H y K
53 49 52 anbi12d m = M o = O p = P s o ran H K C B x y x m y W s H x × W s H y K s O ran H K C B x y x M y W s H x × W s H y K
54 44 fveq2d m = M o = O p = P s p = s P
55 54 eleq1d m = M o = O p = P s p c s P c
56 53 55 imbi12d m = M o = O p = P s o ran H K C B x y x m y W s H x × W s H y K s p c s O ran H K C B x y x M y W s H x × W s H y K s P c
57 56 ralbidv m = M o = O p = P s ran L s o ran H K C B x y x m y W s H x × W s H y K s p c s ran L s O ran H K C B x y x M y W s H x × W s H y K s P c
58 46 57 imbi12d m = M o = O p = P m o p A s ran L s o ran H K C B x y x m y W s H x × W s H y K s p c M O P A s ran L s O ran H K C B x y x M y W s H x × W s H y K s P c
59 58 spc3gv M V O V P V m o p m o p A s ran L s o ran H K C B x y x m y W s H x × W s H y K s p c M O P A s ran L s O ran H K C B x y x M y W s H x × W s H y K s P c
60 40 41 59 3syl φ m o p m o p A s ran L s o ran H K C B x y x m y W s H x × W s H y K s p c M O P A s ran L s O ran H K C B x y x M y W s H x × W s H y K s P c
61 elun x O ran H x O x ran H
62 15 ralrimiva φ v V S H v K C B
63 9 2 10 mvhf T mFS H : V E
64 4 63 syl φ H : V E
65 ffn H : V E H Fn V
66 fveq2 x = H v S x = S H v
67 66 eleq1d x = H v S x K C B S H v K C B
68 67 ralrn H Fn V x ran H S x K C B v V S H v K C B
69 64 65 68 3syl φ x ran H S x K C B v V S H v K C B
70 62 69 mpbird φ x ran H S x K C B
71 70 r19.21bi φ x ran H S x K C B
72 14 71 jaodan φ x O x ran H S x K C B
73 61 72 sylan2b φ x O ran H S x K C B
74 73 ralrimiva φ x O ran H S x K C B
75 8 2 msubf S ran L S : E E
76 13 75 syl φ S : E E
77 76 ffund φ Fun S
78 1 2 34 elmpst M O P mPreSt T M D M -1 = M O E O Fin P E
79 40 78 sylib φ M D M -1 = M O E O Fin P E
80 79 simp2d φ O E O Fin
81 80 simpld φ O E
82 76 fdmd φ dom S = E
83 81 82 sseqtrrd φ O dom S
84 64 frnd φ ran H E
85 84 82 sseqtrrd φ ran H dom S
86 83 85 unssd φ O ran H dom S
87 funimass4 Fun S O ran H dom S S O ran H K C B x O ran H S x K C B
88 77 86 87 syl2anc φ S O ran H K C B x O ran H S x K C B
89 74 88 mpbird φ S O ran H K C B
90 16 3exp2 φ x M y a W S H x b W S H y a K b
91 90 imp4b φ x M y a W S H x b W S H y a K b
92 91 ralrimivv φ x M y a W S H x b W S H y a K b
93 dfss3 W S H x × W S H y K z W S H x × W S H y z K
94 eleq1 z = a b z K a b K
95 df-br a K b a b K
96 94 95 bitr4di z = a b z K a K b
97 96 ralxp z W S H x × W S H y z K a W S H x b W S H y a K b
98 93 97 bitri W S H x × W S H y K a W S H x b W S H y a K b
99 92 98 sylibr φ x M y W S H x × W S H y K
100 99 ex φ x M y W S H x × W S H y K
101 100 alrimivv φ x y x M y W S H x × W S H y K
102 89 101 jca φ S O ran H K C B x y x M y W S H x × W S H y K
103 imaeq1 s = S s O ran H = S O ran H
104 103 sseq1d s = S s O ran H K C B S O ran H K C B
105 fveq1 s = S s H x = S H x
106 105 fveq2d s = S W s H x = W S H x
107 fveq1 s = S s H y = S H y
108 107 fveq2d s = S W s H y = W S H y
109 106 108 xpeq12d s = S W s H x × W s H y = W S H x × W S H y
110 109 sseq1d s = S W s H x × W s H y K W S H x × W S H y K
111 110 imbi2d s = S x M y W s H x × W s H y K x M y W S H x × W S H y K
112 111 2albidv s = S x y x M y W s H x × W s H y K x y x M y W S H x × W S H y K
113 104 112 anbi12d s = S s O ran H K C B x y x M y W s H x × W s H y K S O ran H K C B x y x M y W S H x × W S H y K
114 fveq1 s = S s P = S P
115 114 eleq1d s = S s P c S P c
116 113 115 imbi12d s = S s O ran H K C B x y x M y W s H x × W s H y K s P c S O ran H K C B x y x M y W S H x × W S H y K S P c
117 116 rspcv S ran L s ran L s O ran H K C B x y x M y W s H x × W s H y K s P c S O ran H K C B x y x M y W S H x × W S H y K S P c
118 13 117 syl φ s ran L s O ran H K C B x y x M y W s H x × W s H y K s P c S O ran H K C B x y x M y W S H x × W S H y K S P c
119 102 118 mpid φ s ran L s O ran H K C B x y x M y W s H x × W s H y K s P c S P c
120 12 119 embantd φ M O P A s ran L s O ran H K C B x y x M y W s H x × W s H y K s P c S P c
121 33 60 120 3syld φ B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c S P c
122 121 alrimiv φ c B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c S P c
123 fvex S P V
124 123 elintab S P c | B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c c B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c S P c
125 122 124 sylibr φ S P c | B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c
126 125 20 eleqtrrd φ S P K C B