Step |
Hyp |
Ref |
Expression |
1 |
|
mclsval.d |
|
2 |
|
mclsval.e |
|
3 |
|
mclsval.c |
|
4 |
|
mclsval.1 |
|
5 |
|
mclsval.2 |
|
6 |
|
mclsval.3 |
|
7 |
|
mclsval.h |
|
8 |
|
mclsval.a |
|
9 |
|
mclsval.s |
|
10 |
|
mclsval.v |
|
11 |
|
elex |
|
12 |
|
fveq2 |
|
13 |
12 1
|
eqtr4di |
|
14 |
13
|
pweqd |
|
15 |
|
fveq2 |
|
16 |
15 2
|
eqtr4di |
|
17 |
16
|
pweqd |
|
18 |
|
fveq2 |
|
19 |
18 7
|
eqtr4di |
|
20 |
19
|
rneqd |
|
21 |
20
|
uneq2d |
|
22 |
21
|
sseq1d |
|
23 |
|
fveq2 |
|
24 |
23 8
|
eqtr4di |
|
25 |
24
|
eleq2d |
|
26 |
|
fveq2 |
|
27 |
26 9
|
eqtr4di |
|
28 |
27
|
rneqd |
|
29 |
20
|
uneq2d |
|
30 |
29
|
imaeq2d |
|
31 |
30
|
sseq1d |
|
32 |
|
fveq2 |
|
33 |
32 10
|
eqtr4di |
|
34 |
19
|
fveq1d |
|
35 |
34
|
fveq2d |
|
36 |
33 35
|
fveq12d |
|
37 |
19
|
fveq1d |
|
38 |
37
|
fveq2d |
|
39 |
33 38
|
fveq12d |
|
40 |
36 39
|
xpeq12d |
|
41 |
40
|
sseq1d |
|
42 |
41
|
imbi2d |
|
43 |
42
|
2albidv |
|
44 |
31 43
|
anbi12d |
|
45 |
44
|
imbi1d |
|
46 |
28 45
|
raleqbidv |
|
47 |
25 46
|
imbi12d |
|
48 |
47
|
albidv |
|
49 |
48
|
2albidv |
|
50 |
22 49
|
anbi12d |
|
51 |
50
|
abbidv |
|
52 |
51
|
inteqd |
|
53 |
14 17 52
|
mpoeq123dv |
|
54 |
|
df-mcls |
|
55 |
1
|
fvexi |
|
56 |
55
|
pwex |
|
57 |
2
|
fvexi |
|
58 |
57
|
pwex |
|
59 |
56 58
|
mpoex |
|
60 |
53 54 59
|
fvmpt |
|
61 |
4 11 60
|
3syl |
|
62 |
3 61
|
syl5eq |
|
63 |
|
simprr |
|
64 |
63
|
uneq1d |
|
65 |
64
|
sseq1d |
|
66 |
|
simprl |
|
67 |
66
|
sseq2d |
|
68 |
67
|
imbi2d |
|
69 |
68
|
2albidv |
|
70 |
69
|
anbi2d |
|
71 |
70
|
imbi1d |
|
72 |
71
|
ralbidv |
|
73 |
72
|
imbi2d |
|
74 |
73
|
albidv |
|
75 |
74
|
2albidv |
|
76 |
65 75
|
anbi12d |
|
77 |
76
|
abbidv |
|
78 |
77
|
inteqd |
|
79 |
55
|
elpw2 |
|
80 |
5 79
|
sylibr |
|
81 |
57
|
elpw2 |
|
82 |
6 81
|
sylibr |
|
83 |
1 2 3 4 5 6 7 8 9 10
|
mclsssvlem |
|
84 |
57
|
ssex |
|
85 |
83 84
|
syl |
|
86 |
62 78 80 82 85
|
ovmpod |
|