Metamath Proof Explorer


Theorem mclsssvlem

Description: Lemma for mclsssv . (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclsval.d D = mDV T
mclsval.e E = mEx T
mclsval.c C = mCls T
mclsval.1 φ T mFS
mclsval.2 φ K D
mclsval.3 φ B E
mclsval.h H = mVH T
mclsval.a A = mAx T
mclsval.s S = mSubst T
mclsval.v V = mVars T
Assertion mclsssvlem φ c | B ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y K s p c E

Proof

Step Hyp Ref Expression
1 mclsval.d D = mDV T
2 mclsval.e E = mEx T
3 mclsval.c C = mCls T
4 mclsval.1 φ T mFS
5 mclsval.2 φ K D
6 mclsval.3 φ B E
7 mclsval.h H = mVH T
8 mclsval.a A = mAx T
9 mclsval.s S = mSubst T
10 mclsval.v V = mVars T
11 eqid mVR T = mVR T
12 11 2 7 mvhf T mFS H : mVR T E
13 4 12 syl φ H : mVR T E
14 13 frnd φ ran H E
15 6 14 unssd φ B ran H E
16 9 2 msubf s ran S s : E E
17 eqid mStat T = mStat T
18 8 17 maxsta T mFS A mStat T
19 4 18 syl φ A mStat T
20 eqid mPreSt T = mPreSt T
21 20 17 mstapst mStat T mPreSt T
22 19 21 sstrdi φ A mPreSt T
23 22 sselda φ m o p A m o p mPreSt T
24 1 2 20 elmpst m o p mPreSt T m D m -1 = m o E o Fin p E
25 24 simp3bi m o p mPreSt T p E
26 23 25 syl φ m o p A p E
27 ffvelrn s : E E p E s p E
28 16 26 27 syl2anr φ m o p A s ran S s p E
29 28 a1d φ m o p A s ran S s o ran H E x y x m y V s H x × V s H y K s p E
30 29 ralrimiva φ m o p A s ran S s o ran H E x y x m y V s H x × V s H y K s p E
31 30 ex φ m o p A s ran S s o ran H E x y x m y V s H x × V s H y K s p E
32 31 alrimiv φ p m o p A s ran S s o ran H E x y x m y V s H x × V s H y K s p E
33 32 alrimivv φ m o p m o p A s ran S s o ran H E x y x m y V s H x × V s H y K s p E
34 2 fvexi E V
35 sseq2 c = E B ran H c B ran H E
36 sseq2 c = E s o ran H c s o ran H E
37 36 anbi1d c = E s o ran H c x y x m y V s H x × V s H y K s o ran H E x y x m y V s H x × V s H y K
38 eleq2 c = E s p c s p E
39 37 38 imbi12d c = E s o ran H c x y x m y V s H x × V s H y K s p c s o ran H E x y x m y V s H x × V s H y K s p E
40 39 ralbidv c = E s ran S s o ran H c x y x m y V s H x × V s H y K s p c s ran S s o ran H E x y x m y V s H x × V s H y K s p E
41 40 imbi2d c = E m o p A s ran S s o ran H c x y x m y V s H x × V s H y K s p c m o p A s ran S s o ran H E x y x m y V s H x × V s H y K s p E
42 41 albidv c = E p m o p A s ran S s o ran H c x y x m y V s H x × V s H y K s p c p m o p A s ran S s o ran H E x y x m y V s H x × V s H y K s p E
43 42 2albidv c = E m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y K s p c m o p m o p A s ran S s o ran H E x y x m y V s H x × V s H y K s p E
44 35 43 anbi12d c = E B ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y K s p c B ran H E m o p m o p A s ran S s o ran H E x y x m y V s H x × V s H y K s p E
45 34 44 elab E c | B ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y K s p c B ran H E m o p m o p A s ran S s o ran H E x y x m y V s H x × V s H y K s p E
46 15 33 45 sylanbrc φ E c | B ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y K s p c
47 intss1 E c | B ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y K s p c c | B ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y K s p c E
48 46 47 syl φ c | B ran H c m o p m o p A s ran S s o ran H c x y x m y V s H x × V s H y K s p c E