Metamath Proof Explorer


Theorem mclsssv

Description: The closure of a set of expressions is a set of expressions. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclsval.d D = mDV T
mclsval.e E = mEx T
mclsval.c C = mCls T
mclsval.1 φ T mFS
mclsval.2 φ K D
mclsval.3 φ B E
Assertion mclsssv φ K C B E

Proof

Step Hyp Ref Expression
1 mclsval.d D = mDV T
2 mclsval.e E = mEx T
3 mclsval.c C = mCls T
4 mclsval.1 φ T mFS
5 mclsval.2 φ K D
6 mclsval.3 φ B E
7 eqid mVH T = mVH T
8 eqid mAx T = mAx T
9 eqid mSubst T = mSubst T
10 eqid mVars T = mVars T
11 1 2 3 4 5 6 7 8 9 10 mclsval φ K C B = c | B ran mVH T c m o p m o p mAx T s ran mSubst T s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y K s p c
12 1 2 3 4 5 6 7 8 9 10 mclsssvlem φ c | B ran mVH T c m o p m o p mAx T s ran mSubst T s o ran mVH T c x y x m y mVars T s mVH T x × mVars T s mVH T y K s p c E
13 11 12 eqsstrd φ K C B E