Step |
Hyp |
Ref |
Expression |
1 |
|
mclsval.d |
|- D = ( mDV ` T ) |
2 |
|
mclsval.e |
|- E = ( mEx ` T ) |
3 |
|
mclsval.c |
|- C = ( mCls ` T ) |
4 |
|
mclsval.1 |
|- ( ph -> T e. mFS ) |
5 |
|
mclsval.2 |
|- ( ph -> K C_ D ) |
6 |
|
mclsval.3 |
|- ( ph -> B C_ E ) |
7 |
|
eqid |
|- ( mVH ` T ) = ( mVH ` T ) |
8 |
|
eqid |
|- ( mAx ` T ) = ( mAx ` T ) |
9 |
|
eqid |
|- ( mSubst ` T ) = ( mSubst ` T ) |
10 |
|
eqid |
|- ( mVars ` T ) = ( mVars ` T ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
mclsval |
|- ( ph -> ( K C B ) = |^| { c | ( ( B u. ran ( mVH ` T ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ K ) ) -> ( s ` p ) e. c ) ) ) } ) |
12 |
1 2 3 4 5 6 7 8 9 10
|
mclsssvlem |
|- ( ph -> |^| { c | ( ( B u. ran ( mVH ` T ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ K ) ) -> ( s ` p ) e. c ) ) ) } C_ E ) |
13 |
11 12
|
eqsstrd |
|- ( ph -> ( K C B ) C_ E ) |