Metamath Proof Explorer


Theorem mclsssv

Description: The closure of a set of expressions is a set of expressions. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclsval.d
|- D = ( mDV ` T )
mclsval.e
|- E = ( mEx ` T )
mclsval.c
|- C = ( mCls ` T )
mclsval.1
|- ( ph -> T e. mFS )
mclsval.2
|- ( ph -> K C_ D )
mclsval.3
|- ( ph -> B C_ E )
Assertion mclsssv
|- ( ph -> ( K C B ) C_ E )

Proof

Step Hyp Ref Expression
1 mclsval.d
 |-  D = ( mDV ` T )
2 mclsval.e
 |-  E = ( mEx ` T )
3 mclsval.c
 |-  C = ( mCls ` T )
4 mclsval.1
 |-  ( ph -> T e. mFS )
5 mclsval.2
 |-  ( ph -> K C_ D )
6 mclsval.3
 |-  ( ph -> B C_ E )
7 eqid
 |-  ( mVH ` T ) = ( mVH ` T )
8 eqid
 |-  ( mAx ` T ) = ( mAx ` T )
9 eqid
 |-  ( mSubst ` T ) = ( mSubst ` T )
10 eqid
 |-  ( mVars ` T ) = ( mVars ` T )
11 1 2 3 4 5 6 7 8 9 10 mclsval
 |-  ( ph -> ( K C B ) = |^| { c | ( ( B u. ran ( mVH ` T ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ K ) ) -> ( s ` p ) e. c ) ) ) } )
12 1 2 3 4 5 6 7 8 9 10 mclsssvlem
 |-  ( ph -> |^| { c | ( ( B u. ran ( mVH ` T ) ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran ( mVH ` T ) ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( ( mVH ` T ) ` y ) ) ) ) C_ K ) ) -> ( s ` p ) e. c ) ) ) } C_ E )
13 11 12 eqsstrd
 |-  ( ph -> ( K C B ) C_ E )