| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mclsval.d | ⊢ 𝐷  =  ( mDV ‘ 𝑇 ) | 
						
							| 2 |  | mclsval.e | ⊢ 𝐸  =  ( mEx ‘ 𝑇 ) | 
						
							| 3 |  | mclsval.c | ⊢ 𝐶  =  ( mCls ‘ 𝑇 ) | 
						
							| 4 |  | mclsval.1 | ⊢ ( 𝜑  →  𝑇  ∈  mFS ) | 
						
							| 5 |  | mclsval.2 | ⊢ ( 𝜑  →  𝐾  ⊆  𝐷 ) | 
						
							| 6 |  | mclsval.3 | ⊢ ( 𝜑  →  𝐵  ⊆  𝐸 ) | 
						
							| 7 |  | eqid | ⊢ ( mVH ‘ 𝑇 )  =  ( mVH ‘ 𝑇 ) | 
						
							| 8 |  | eqid | ⊢ ( mAx ‘ 𝑇 )  =  ( mAx ‘ 𝑇 ) | 
						
							| 9 |  | eqid | ⊢ ( mSubst ‘ 𝑇 )  =  ( mSubst ‘ 𝑇 ) | 
						
							| 10 |  | eqid | ⊢ ( mVars ‘ 𝑇 )  =  ( mVars ‘ 𝑇 ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 10 | mclsval | ⊢ ( 𝜑  →  ( 𝐾 𝐶 𝐵 )  =  ∩  { 𝑐  ∣  ( ( 𝐵  ∪  ran  ( mVH ‘ 𝑇 ) )  ⊆  𝑐  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  ( mAx ‘ 𝑇 )  →  ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑇 ) ( ( ( 𝑠  “  ( 𝑜  ∪  ran  ( mVH ‘ 𝑇 ) ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( ( mVars ‘ 𝑇 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑇 ) ‘ 𝑥 ) ) )  ×  ( ( mVars ‘ 𝑇 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑇 ) ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 ) ) ) } ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 9 10 | mclsssvlem | ⊢ ( 𝜑  →  ∩  { 𝑐  ∣  ( ( 𝐵  ∪  ran  ( mVH ‘ 𝑇 ) )  ⊆  𝑐  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  ( mAx ‘ 𝑇 )  →  ∀ 𝑠  ∈  ran  ( mSubst ‘ 𝑇 ) ( ( ( 𝑠  “  ( 𝑜  ∪  ran  ( mVH ‘ 𝑇 ) ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( ( mVars ‘ 𝑇 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑇 ) ‘ 𝑥 ) ) )  ×  ( ( mVars ‘ 𝑇 ) ‘ ( 𝑠 ‘ ( ( mVH ‘ 𝑇 ) ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 ) ) ) }  ⊆  𝐸 ) | 
						
							| 13 | 11 12 | eqsstrd | ⊢ ( 𝜑  →  ( 𝐾 𝐶 𝐵 )  ⊆  𝐸 ) |