| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mclsval.d | ⊢ 𝐷  =  ( mDV ‘ 𝑇 ) | 
						
							| 2 |  | mclsval.e | ⊢ 𝐸  =  ( mEx ‘ 𝑇 ) | 
						
							| 3 |  | mclsval.c | ⊢ 𝐶  =  ( mCls ‘ 𝑇 ) | 
						
							| 4 |  | mclsval.1 | ⊢ ( 𝜑  →  𝑇  ∈  mFS ) | 
						
							| 5 |  | mclsval.2 | ⊢ ( 𝜑  →  𝐾  ⊆  𝐷 ) | 
						
							| 6 |  | mclsval.3 | ⊢ ( 𝜑  →  𝐵  ⊆  𝐸 ) | 
						
							| 7 |  | mclsval.h | ⊢ 𝐻  =  ( mVH ‘ 𝑇 ) | 
						
							| 8 |  | mclsval.a | ⊢ 𝐴  =  ( mAx ‘ 𝑇 ) | 
						
							| 9 |  | mclsval.s | ⊢ 𝑆  =  ( mSubst ‘ 𝑇 ) | 
						
							| 10 |  | mclsval.v | ⊢ 𝑉  =  ( mVars ‘ 𝑇 ) | 
						
							| 11 |  | eqid | ⊢ ( mVR ‘ 𝑇 )  =  ( mVR ‘ 𝑇 ) | 
						
							| 12 | 11 2 7 | mvhf | ⊢ ( 𝑇  ∈  mFS  →  𝐻 : ( mVR ‘ 𝑇 ) ⟶ 𝐸 ) | 
						
							| 13 | 4 12 | syl | ⊢ ( 𝜑  →  𝐻 : ( mVR ‘ 𝑇 ) ⟶ 𝐸 ) | 
						
							| 14 | 13 | frnd | ⊢ ( 𝜑  →  ran  𝐻  ⊆  𝐸 ) | 
						
							| 15 | 6 14 | unssd | ⊢ ( 𝜑  →  ( 𝐵  ∪  ran  𝐻 )  ⊆  𝐸 ) | 
						
							| 16 | 9 2 | msubf | ⊢ ( 𝑠  ∈  ran  𝑆  →  𝑠 : 𝐸 ⟶ 𝐸 ) | 
						
							| 17 |  | eqid | ⊢ ( mStat ‘ 𝑇 )  =  ( mStat ‘ 𝑇 ) | 
						
							| 18 | 8 17 | maxsta | ⊢ ( 𝑇  ∈  mFS  →  𝐴  ⊆  ( mStat ‘ 𝑇 ) ) | 
						
							| 19 | 4 18 | syl | ⊢ ( 𝜑  →  𝐴  ⊆  ( mStat ‘ 𝑇 ) ) | 
						
							| 20 |  | eqid | ⊢ ( mPreSt ‘ 𝑇 )  =  ( mPreSt ‘ 𝑇 ) | 
						
							| 21 | 20 17 | mstapst | ⊢ ( mStat ‘ 𝑇 )  ⊆  ( mPreSt ‘ 𝑇 ) | 
						
							| 22 | 19 21 | sstrdi | ⊢ ( 𝜑  →  𝐴  ⊆  ( mPreSt ‘ 𝑇 ) ) | 
						
							| 23 | 22 | sselda | ⊢ ( ( 𝜑  ∧  〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴 )  →  〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  ( mPreSt ‘ 𝑇 ) ) | 
						
							| 24 | 1 2 20 | elmpst | ⊢ ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  ( mPreSt ‘ 𝑇 )  ↔  ( ( 𝑚  ⊆  𝐷  ∧  ◡ 𝑚  =  𝑚 )  ∧  ( 𝑜  ⊆  𝐸  ∧  𝑜  ∈  Fin )  ∧  𝑝  ∈  𝐸 ) ) | 
						
							| 25 | 24 | simp3bi | ⊢ ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  ( mPreSt ‘ 𝑇 )  →  𝑝  ∈  𝐸 ) | 
						
							| 26 | 23 25 | syl | ⊢ ( ( 𝜑  ∧  〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴 )  →  𝑝  ∈  𝐸 ) | 
						
							| 27 |  | ffvelcdm | ⊢ ( ( 𝑠 : 𝐸 ⟶ 𝐸  ∧  𝑝  ∈  𝐸 )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝐸 ) | 
						
							| 28 | 16 26 27 | syl2anr | ⊢ ( ( ( 𝜑  ∧  〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴 )  ∧  𝑠  ∈  ran  𝑆 )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝐸 ) | 
						
							| 29 | 28 | a1d | ⊢ ( ( ( 𝜑  ∧  〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴 )  ∧  𝑠  ∈  ran  𝑆 )  →  ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝐸  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝐸 ) ) | 
						
							| 30 | 29 | ralrimiva | ⊢ ( ( 𝜑  ∧  〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴 )  →  ∀ 𝑠  ∈  ran  𝑆 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝐸  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝐸 ) ) | 
						
							| 31 | 30 | ex | ⊢ ( 𝜑  →  ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝑆 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝐸  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝐸 ) ) ) | 
						
							| 32 | 31 | alrimiv | ⊢ ( 𝜑  →  ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝑆 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝐸  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝐸 ) ) ) | 
						
							| 33 | 32 | alrimivv | ⊢ ( 𝜑  →  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝑆 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝐸  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝐸 ) ) ) | 
						
							| 34 | 2 | fvexi | ⊢ 𝐸  ∈  V | 
						
							| 35 |  | sseq2 | ⊢ ( 𝑐  =  𝐸  →  ( ( 𝐵  ∪  ran  𝐻 )  ⊆  𝑐  ↔  ( 𝐵  ∪  ran  𝐻 )  ⊆  𝐸 ) ) | 
						
							| 36 |  | sseq2 | ⊢ ( 𝑐  =  𝐸  →  ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ↔  ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝐸 ) ) | 
						
							| 37 | 36 | anbi1d | ⊢ ( 𝑐  =  𝐸  →  ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  ↔  ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝐸  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) ) ) ) | 
						
							| 38 |  | eleq2 | ⊢ ( 𝑐  =  𝐸  →  ( ( 𝑠 ‘ 𝑝 )  ∈  𝑐  ↔  ( 𝑠 ‘ 𝑝 )  ∈  𝐸 ) ) | 
						
							| 39 | 37 38 | imbi12d | ⊢ ( 𝑐  =  𝐸  →  ( ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 )  ↔  ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝐸  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝐸 ) ) ) | 
						
							| 40 | 39 | ralbidv | ⊢ ( 𝑐  =  𝐸  →  ( ∀ 𝑠  ∈  ran  𝑆 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 )  ↔  ∀ 𝑠  ∈  ran  𝑆 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝐸  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝐸 ) ) ) | 
						
							| 41 | 40 | imbi2d | ⊢ ( 𝑐  =  𝐸  →  ( ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝑆 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 ) )  ↔  ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝑆 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝐸  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝐸 ) ) ) ) | 
						
							| 42 | 41 | albidv | ⊢ ( 𝑐  =  𝐸  →  ( ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝑆 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 ) )  ↔  ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝑆 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝐸  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝐸 ) ) ) ) | 
						
							| 43 | 42 | 2albidv | ⊢ ( 𝑐  =  𝐸  →  ( ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝑆 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 ) )  ↔  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝑆 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝐸  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝐸 ) ) ) ) | 
						
							| 44 | 35 43 | anbi12d | ⊢ ( 𝑐  =  𝐸  →  ( ( ( 𝐵  ∪  ran  𝐻 )  ⊆  𝑐  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝑆 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 ) ) )  ↔  ( ( 𝐵  ∪  ran  𝐻 )  ⊆  𝐸  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝑆 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝐸  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝐸 ) ) ) ) ) | 
						
							| 45 | 34 44 | elab | ⊢ ( 𝐸  ∈  { 𝑐  ∣  ( ( 𝐵  ∪  ran  𝐻 )  ⊆  𝑐  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝑆 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 ) ) ) }  ↔  ( ( 𝐵  ∪  ran  𝐻 )  ⊆  𝐸  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝑆 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝐸  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝐸 ) ) ) ) | 
						
							| 46 | 15 33 45 | sylanbrc | ⊢ ( 𝜑  →  𝐸  ∈  { 𝑐  ∣  ( ( 𝐵  ∪  ran  𝐻 )  ⊆  𝑐  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝑆 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 ) ) ) } ) | 
						
							| 47 |  | intss1 | ⊢ ( 𝐸  ∈  { 𝑐  ∣  ( ( 𝐵  ∪  ran  𝐻 )  ⊆  𝑐  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝑆 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 ) ) ) }  →  ∩  { 𝑐  ∣  ( ( 𝐵  ∪  ran  𝐻 )  ⊆  𝑐  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝑆 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 ) ) ) }  ⊆  𝐸 ) | 
						
							| 48 | 46 47 | syl | ⊢ ( 𝜑  →  ∩  { 𝑐  ∣  ( ( 𝐵  ∪  ran  𝐻 )  ⊆  𝑐  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝑆 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 ) ) ) }  ⊆  𝐸 ) |