Step |
Hyp |
Ref |
Expression |
1 |
|
mclsval.d |
⊢ 𝐷 = ( mDV ‘ 𝑇 ) |
2 |
|
mclsval.e |
⊢ 𝐸 = ( mEx ‘ 𝑇 ) |
3 |
|
mclsval.c |
⊢ 𝐶 = ( mCls ‘ 𝑇 ) |
4 |
|
mclsval.1 |
⊢ ( 𝜑 → 𝑇 ∈ mFS ) |
5 |
|
mclsval.2 |
⊢ ( 𝜑 → 𝐾 ⊆ 𝐷 ) |
6 |
|
mclsval.3 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐸 ) |
7 |
|
mclsval.h |
⊢ 𝐻 = ( mVH ‘ 𝑇 ) |
8 |
|
mclsval.a |
⊢ 𝐴 = ( mAx ‘ 𝑇 ) |
9 |
|
mclsval.s |
⊢ 𝑆 = ( mSubst ‘ 𝑇 ) |
10 |
|
mclsval.v |
⊢ 𝑉 = ( mVars ‘ 𝑇 ) |
11 |
|
eqid |
⊢ ( mVR ‘ 𝑇 ) = ( mVR ‘ 𝑇 ) |
12 |
11 2 7
|
mvhf |
⊢ ( 𝑇 ∈ mFS → 𝐻 : ( mVR ‘ 𝑇 ) ⟶ 𝐸 ) |
13 |
4 12
|
syl |
⊢ ( 𝜑 → 𝐻 : ( mVR ‘ 𝑇 ) ⟶ 𝐸 ) |
14 |
13
|
frnd |
⊢ ( 𝜑 → ran 𝐻 ⊆ 𝐸 ) |
15 |
6 14
|
unssd |
⊢ ( 𝜑 → ( 𝐵 ∪ ran 𝐻 ) ⊆ 𝐸 ) |
16 |
9 2
|
msubf |
⊢ ( 𝑠 ∈ ran 𝑆 → 𝑠 : 𝐸 ⟶ 𝐸 ) |
17 |
|
eqid |
⊢ ( mStat ‘ 𝑇 ) = ( mStat ‘ 𝑇 ) |
18 |
8 17
|
maxsta |
⊢ ( 𝑇 ∈ mFS → 𝐴 ⊆ ( mStat ‘ 𝑇 ) ) |
19 |
4 18
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ( mStat ‘ 𝑇 ) ) |
20 |
|
eqid |
⊢ ( mPreSt ‘ 𝑇 ) = ( mPreSt ‘ 𝑇 ) |
21 |
20 17
|
mstapst |
⊢ ( mStat ‘ 𝑇 ) ⊆ ( mPreSt ‘ 𝑇 ) |
22 |
19 21
|
sstrdi |
⊢ ( 𝜑 → 𝐴 ⊆ ( mPreSt ‘ 𝑇 ) ) |
23 |
22
|
sselda |
⊢ ( ( 𝜑 ∧ 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ 𝐴 ) → 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mPreSt ‘ 𝑇 ) ) |
24 |
1 2 20
|
elmpst |
⊢ ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mPreSt ‘ 𝑇 ) ↔ ( ( 𝑚 ⊆ 𝐷 ∧ ◡ 𝑚 = 𝑚 ) ∧ ( 𝑜 ⊆ 𝐸 ∧ 𝑜 ∈ Fin ) ∧ 𝑝 ∈ 𝐸 ) ) |
25 |
24
|
simp3bi |
⊢ ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mPreSt ‘ 𝑇 ) → 𝑝 ∈ 𝐸 ) |
26 |
23 25
|
syl |
⊢ ( ( 𝜑 ∧ 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ 𝐴 ) → 𝑝 ∈ 𝐸 ) |
27 |
|
ffvelrn |
⊢ ( ( 𝑠 : 𝐸 ⟶ 𝐸 ∧ 𝑝 ∈ 𝐸 ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝐸 ) |
28 |
16 26 27
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ 𝐴 ) ∧ 𝑠 ∈ ran 𝑆 ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝐸 ) |
29 |
28
|
a1d |
⊢ ( ( ( 𝜑 ∧ 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ 𝐴 ) ∧ 𝑠 ∈ ran 𝑆 ) → ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝐸 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝐸 ) ) |
30 |
29
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ 𝐴 ) → ∀ 𝑠 ∈ ran 𝑆 ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝐸 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝐸 ) ) |
31 |
30
|
ex |
⊢ ( 𝜑 → ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ 𝐴 → ∀ 𝑠 ∈ ran 𝑆 ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝐸 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝐸 ) ) ) |
32 |
31
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ 𝐴 → ∀ 𝑠 ∈ ran 𝑆 ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝐸 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝐸 ) ) ) |
33 |
32
|
alrimivv |
⊢ ( 𝜑 → ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ 𝐴 → ∀ 𝑠 ∈ ran 𝑆 ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝐸 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝐸 ) ) ) |
34 |
2
|
fvexi |
⊢ 𝐸 ∈ V |
35 |
|
sseq2 |
⊢ ( 𝑐 = 𝐸 → ( ( 𝐵 ∪ ran 𝐻 ) ⊆ 𝑐 ↔ ( 𝐵 ∪ ran 𝐻 ) ⊆ 𝐸 ) ) |
36 |
|
sseq2 |
⊢ ( 𝑐 = 𝐸 → ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝑐 ↔ ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝐸 ) ) |
37 |
36
|
anbi1d |
⊢ ( 𝑐 = 𝐸 → ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) ↔ ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝐸 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) ) ) |
38 |
|
eleq2 |
⊢ ( 𝑐 = 𝐸 → ( ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ↔ ( 𝑠 ‘ 𝑝 ) ∈ 𝐸 ) ) |
39 |
37 38
|
imbi12d |
⊢ ( 𝑐 = 𝐸 → ( ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ↔ ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝐸 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝐸 ) ) ) |
40 |
39
|
ralbidv |
⊢ ( 𝑐 = 𝐸 → ( ∀ 𝑠 ∈ ran 𝑆 ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ↔ ∀ 𝑠 ∈ ran 𝑆 ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝐸 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝐸 ) ) ) |
41 |
40
|
imbi2d |
⊢ ( 𝑐 = 𝐸 → ( ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ 𝐴 → ∀ 𝑠 ∈ ran 𝑆 ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ↔ ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ 𝐴 → ∀ 𝑠 ∈ ran 𝑆 ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝐸 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝐸 ) ) ) ) |
42 |
41
|
albidv |
⊢ ( 𝑐 = 𝐸 → ( ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ 𝐴 → ∀ 𝑠 ∈ ran 𝑆 ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ↔ ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ 𝐴 → ∀ 𝑠 ∈ ran 𝑆 ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝐸 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝐸 ) ) ) ) |
43 |
42
|
2albidv |
⊢ ( 𝑐 = 𝐸 → ( ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ 𝐴 → ∀ 𝑠 ∈ ran 𝑆 ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ↔ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ 𝐴 → ∀ 𝑠 ∈ ran 𝑆 ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝐸 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝐸 ) ) ) ) |
44 |
35 43
|
anbi12d |
⊢ ( 𝑐 = 𝐸 → ( ( ( 𝐵 ∪ ran 𝐻 ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ 𝐴 → ∀ 𝑠 ∈ ran 𝑆 ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) ↔ ( ( 𝐵 ∪ ran 𝐻 ) ⊆ 𝐸 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ 𝐴 → ∀ 𝑠 ∈ ran 𝑆 ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝐸 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝐸 ) ) ) ) ) |
45 |
34 44
|
elab |
⊢ ( 𝐸 ∈ { 𝑐 ∣ ( ( 𝐵 ∪ ran 𝐻 ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ 𝐴 → ∀ 𝑠 ∈ ran 𝑆 ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) } ↔ ( ( 𝐵 ∪ ran 𝐻 ) ⊆ 𝐸 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ 𝐴 → ∀ 𝑠 ∈ ran 𝑆 ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝐸 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝐸 ) ) ) ) |
46 |
15 33 45
|
sylanbrc |
⊢ ( 𝜑 → 𝐸 ∈ { 𝑐 ∣ ( ( 𝐵 ∪ ran 𝐻 ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ 𝐴 → ∀ 𝑠 ∈ ran 𝑆 ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) } ) |
47 |
|
intss1 |
⊢ ( 𝐸 ∈ { 𝑐 ∣ ( ( 𝐵 ∪ ran 𝐻 ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ 𝐴 → ∀ 𝑠 ∈ ran 𝑆 ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) } → ∩ { 𝑐 ∣ ( ( 𝐵 ∪ ran 𝐻 ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ 𝐴 → ∀ 𝑠 ∈ ran 𝑆 ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) } ⊆ 𝐸 ) |
48 |
46 47
|
syl |
⊢ ( 𝜑 → ∩ { 𝑐 ∣ ( ( 𝐵 ∪ ran 𝐻 ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ 𝐴 → ∀ 𝑠 ∈ ran 𝑆 ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( 𝑉 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) } ⊆ 𝐸 ) |