Step |
Hyp |
Ref |
Expression |
1 |
|
mclsval.d |
⊢ 𝐷 = ( mDV ‘ 𝑇 ) |
2 |
|
mclsval.e |
⊢ 𝐸 = ( mEx ‘ 𝑇 ) |
3 |
|
mclsval.c |
⊢ 𝐶 = ( mCls ‘ 𝑇 ) |
4 |
|
mclsval.1 |
⊢ ( 𝜑 → 𝑇 ∈ mFS ) |
5 |
|
mclsval.2 |
⊢ ( 𝜑 → 𝐾 ⊆ 𝐷 ) |
6 |
|
mclsval.3 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐸 ) |
7 |
|
ssmclslem.h |
⊢ 𝐻 = ( mVH ‘ 𝑇 ) |
8 |
|
simpl |
⊢ ( ( ( 𝐵 ∪ ran 𝐻 ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑇 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑇 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑇 ) ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑇 ) ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) → ( 𝐵 ∪ ran 𝐻 ) ⊆ 𝑐 ) |
9 |
8
|
a1i |
⊢ ( 𝜑 → ( ( ( 𝐵 ∪ ran 𝐻 ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑇 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑇 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑇 ) ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑇 ) ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) → ( 𝐵 ∪ ran 𝐻 ) ⊆ 𝑐 ) ) |
10 |
9
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑐 ( ( ( 𝐵 ∪ ran 𝐻 ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑇 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑇 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑇 ) ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑇 ) ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) → ( 𝐵 ∪ ran 𝐻 ) ⊆ 𝑐 ) ) |
11 |
|
ssintab |
⊢ ( ( 𝐵 ∪ ran 𝐻 ) ⊆ ∩ { 𝑐 ∣ ( ( 𝐵 ∪ ran 𝐻 ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑇 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑇 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑇 ) ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑇 ) ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) } ↔ ∀ 𝑐 ( ( ( 𝐵 ∪ ran 𝐻 ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑇 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑇 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑇 ) ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑇 ) ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) → ( 𝐵 ∪ ran 𝐻 ) ⊆ 𝑐 ) ) |
12 |
10 11
|
sylibr |
⊢ ( 𝜑 → ( 𝐵 ∪ ran 𝐻 ) ⊆ ∩ { 𝑐 ∣ ( ( 𝐵 ∪ ran 𝐻 ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑇 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑇 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑇 ) ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑇 ) ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) } ) |
13 |
|
eqid |
⊢ ( mAx ‘ 𝑇 ) = ( mAx ‘ 𝑇 ) |
14 |
|
eqid |
⊢ ( mSubst ‘ 𝑇 ) = ( mSubst ‘ 𝑇 ) |
15 |
|
eqid |
⊢ ( mVars ‘ 𝑇 ) = ( mVars ‘ 𝑇 ) |
16 |
1 2 3 4 5 6 7 13 14 15
|
mclsval |
⊢ ( 𝜑 → ( 𝐾 𝐶 𝐵 ) = ∩ { 𝑐 ∣ ( ( 𝐵 ∪ ran 𝐻 ) ⊆ 𝑐 ∧ ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 , 𝑜 , 𝑝 〉 ∈ ( mAx ‘ 𝑇 ) → ∀ 𝑠 ∈ ran ( mSubst ‘ 𝑇 ) ( ( ( 𝑠 “ ( 𝑜 ∪ ran 𝐻 ) ) ⊆ 𝑐 ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦 → ( ( ( mVars ‘ 𝑇 ) ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) ) × ( ( mVars ‘ 𝑇 ) ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) ⊆ 𝐾 ) ) → ( 𝑠 ‘ 𝑝 ) ∈ 𝑐 ) ) ) } ) |
17 |
12 16
|
sseqtrrd |
⊢ ( 𝜑 → ( 𝐵 ∪ ran 𝐻 ) ⊆ ( 𝐾 𝐶 𝐵 ) ) |