Metamath Proof Explorer


Theorem vhmcls

Description: All variable hypotheses are in the closure. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclsval.d 𝐷 = ( mDV ‘ 𝑇 )
mclsval.e 𝐸 = ( mEx ‘ 𝑇 )
mclsval.c 𝐶 = ( mCls ‘ 𝑇 )
mclsval.1 ( 𝜑𝑇 ∈ mFS )
mclsval.2 ( 𝜑𝐾𝐷 )
mclsval.3 ( 𝜑𝐵𝐸 )
ssmclslem.h 𝐻 = ( mVH ‘ 𝑇 )
vhmcls.v 𝑉 = ( mVR ‘ 𝑇 )
vhmcls.3 ( 𝜑𝑋𝑉 )
Assertion vhmcls ( 𝜑 → ( 𝐻𝑋 ) ∈ ( 𝐾 𝐶 𝐵 ) )

Proof

Step Hyp Ref Expression
1 mclsval.d 𝐷 = ( mDV ‘ 𝑇 )
2 mclsval.e 𝐸 = ( mEx ‘ 𝑇 )
3 mclsval.c 𝐶 = ( mCls ‘ 𝑇 )
4 mclsval.1 ( 𝜑𝑇 ∈ mFS )
5 mclsval.2 ( 𝜑𝐾𝐷 )
6 mclsval.3 ( 𝜑𝐵𝐸 )
7 ssmclslem.h 𝐻 = ( mVH ‘ 𝑇 )
8 vhmcls.v 𝑉 = ( mVR ‘ 𝑇 )
9 vhmcls.3 ( 𝜑𝑋𝑉 )
10 1 2 3 4 5 6 7 ssmclslem ( 𝜑 → ( 𝐵 ∪ ran 𝐻 ) ⊆ ( 𝐾 𝐶 𝐵 ) )
11 10 unssbd ( 𝜑 → ran 𝐻 ⊆ ( 𝐾 𝐶 𝐵 ) )
12 8 2 7 mvhf ( 𝑇 ∈ mFS → 𝐻 : 𝑉𝐸 )
13 ffn ( 𝐻 : 𝑉𝐸𝐻 Fn 𝑉 )
14 4 12 13 3syl ( 𝜑𝐻 Fn 𝑉 )
15 fnfvelrn ( ( 𝐻 Fn 𝑉𝑋𝑉 ) → ( 𝐻𝑋 ) ∈ ran 𝐻 )
16 14 9 15 syl2anc ( 𝜑 → ( 𝐻𝑋 ) ∈ ran 𝐻 )
17 11 16 sseldd ( 𝜑 → ( 𝐻𝑋 ) ∈ ( 𝐾 𝐶 𝐵 ) )