| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mclsval.d | ⊢ 𝐷  =  ( mDV ‘ 𝑇 ) | 
						
							| 2 |  | mclsval.e | ⊢ 𝐸  =  ( mEx ‘ 𝑇 ) | 
						
							| 3 |  | mclsval.c | ⊢ 𝐶  =  ( mCls ‘ 𝑇 ) | 
						
							| 4 |  | mclsval.1 | ⊢ ( 𝜑  →  𝑇  ∈  mFS ) | 
						
							| 5 |  | mclsval.2 | ⊢ ( 𝜑  →  𝐾  ⊆  𝐷 ) | 
						
							| 6 |  | mclsval.3 | ⊢ ( 𝜑  →  𝐵  ⊆  𝐸 ) | 
						
							| 7 |  | ssmclslem.h | ⊢ 𝐻  =  ( mVH ‘ 𝑇 ) | 
						
							| 8 |  | vhmcls.v | ⊢ 𝑉  =  ( mVR ‘ 𝑇 ) | 
						
							| 9 |  | vhmcls.3 | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 10 | 1 2 3 4 5 6 7 | ssmclslem | ⊢ ( 𝜑  →  ( 𝐵  ∪  ran  𝐻 )  ⊆  ( 𝐾 𝐶 𝐵 ) ) | 
						
							| 11 | 10 | unssbd | ⊢ ( 𝜑  →  ran  𝐻  ⊆  ( 𝐾 𝐶 𝐵 ) ) | 
						
							| 12 | 8 2 7 | mvhf | ⊢ ( 𝑇  ∈  mFS  →  𝐻 : 𝑉 ⟶ 𝐸 ) | 
						
							| 13 |  | ffn | ⊢ ( 𝐻 : 𝑉 ⟶ 𝐸  →  𝐻  Fn  𝑉 ) | 
						
							| 14 | 4 12 13 | 3syl | ⊢ ( 𝜑  →  𝐻  Fn  𝑉 ) | 
						
							| 15 |  | fnfvelrn | ⊢ ( ( 𝐻  Fn  𝑉  ∧  𝑋  ∈  𝑉 )  →  ( 𝐻 ‘ 𝑋 )  ∈  ran  𝐻 ) | 
						
							| 16 | 14 9 15 | syl2anc | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝑋 )  ∈  ran  𝐻 ) | 
						
							| 17 | 11 16 | sseldd | ⊢ ( 𝜑  →  ( 𝐻 ‘ 𝑋 )  ∈  ( 𝐾 𝐶 𝐵 ) ) |