| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mclsval.d |
⊢ 𝐷 = ( mDV ‘ 𝑇 ) |
| 2 |
|
mclsval.e |
⊢ 𝐸 = ( mEx ‘ 𝑇 ) |
| 3 |
|
mclsval.c |
⊢ 𝐶 = ( mCls ‘ 𝑇 ) |
| 4 |
|
mclsval.1 |
⊢ ( 𝜑 → 𝑇 ∈ mFS ) |
| 5 |
|
mclsval.2 |
⊢ ( 𝜑 → 𝐾 ⊆ 𝐷 ) |
| 6 |
|
mclsval.3 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐸 ) |
| 7 |
|
ssmclslem.h |
⊢ 𝐻 = ( mVH ‘ 𝑇 ) |
| 8 |
|
vhmcls.v |
⊢ 𝑉 = ( mVR ‘ 𝑇 ) |
| 9 |
|
vhmcls.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 10 |
1 2 3 4 5 6 7
|
ssmclslem |
⊢ ( 𝜑 → ( 𝐵 ∪ ran 𝐻 ) ⊆ ( 𝐾 𝐶 𝐵 ) ) |
| 11 |
10
|
unssbd |
⊢ ( 𝜑 → ran 𝐻 ⊆ ( 𝐾 𝐶 𝐵 ) ) |
| 12 |
8 2 7
|
mvhf |
⊢ ( 𝑇 ∈ mFS → 𝐻 : 𝑉 ⟶ 𝐸 ) |
| 13 |
|
ffn |
⊢ ( 𝐻 : 𝑉 ⟶ 𝐸 → 𝐻 Fn 𝑉 ) |
| 14 |
4 12 13
|
3syl |
⊢ ( 𝜑 → 𝐻 Fn 𝑉 ) |
| 15 |
|
fnfvelrn |
⊢ ( ( 𝐻 Fn 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐻 ‘ 𝑋 ) ∈ ran 𝐻 ) |
| 16 |
14 9 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑋 ) ∈ ran 𝐻 ) |
| 17 |
11 16
|
sseldd |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑋 ) ∈ ( 𝐾 𝐶 𝐵 ) ) |