Metamath Proof Explorer


Theorem vhmcls

Description: All variable hypotheses are in the closure. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclsval.d D = mDV T
mclsval.e E = mEx T
mclsval.c C = mCls T
mclsval.1 φ T mFS
mclsval.2 φ K D
mclsval.3 φ B E
ssmclslem.h H = mVH T
vhmcls.v V = mVR T
vhmcls.3 φ X V
Assertion vhmcls φ H X K C B

Proof

Step Hyp Ref Expression
1 mclsval.d D = mDV T
2 mclsval.e E = mEx T
3 mclsval.c C = mCls T
4 mclsval.1 φ T mFS
5 mclsval.2 φ K D
6 mclsval.3 φ B E
7 ssmclslem.h H = mVH T
8 vhmcls.v V = mVR T
9 vhmcls.3 φ X V
10 1 2 3 4 5 6 7 ssmclslem φ B ran H K C B
11 10 unssbd φ ran H K C B
12 8 2 7 mvhf T mFS H : V E
13 ffn H : V E H Fn V
14 4 12 13 3syl φ H Fn V
15 fnfvelrn H Fn V X V H X ran H
16 14 9 15 syl2anc φ H X ran H
17 11 16 sseldd φ H X K C B