Metamath Proof Explorer


Theorem ssmclslem

Description: Lemma for ssmcls . (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclsval.d D = mDV T
mclsval.e E = mEx T
mclsval.c C = mCls T
mclsval.1 φ T mFS
mclsval.2 φ K D
mclsval.3 φ B E
ssmclslem.h H = mVH T
Assertion ssmclslem φ B ran H K C B

Proof

Step Hyp Ref Expression
1 mclsval.d D = mDV T
2 mclsval.e E = mEx T
3 mclsval.c C = mCls T
4 mclsval.1 φ T mFS
5 mclsval.2 φ K D
6 mclsval.3 φ B E
7 ssmclslem.h H = mVH T
8 simpl B ran H c m o p m o p mAx T s ran mSubst T s o ran H c x y x m y mVars T s H x × mVars T s H y K s p c B ran H c
9 8 a1i φ B ran H c m o p m o p mAx T s ran mSubst T s o ran H c x y x m y mVars T s H x × mVars T s H y K s p c B ran H c
10 9 alrimiv φ c B ran H c m o p m o p mAx T s ran mSubst T s o ran H c x y x m y mVars T s H x × mVars T s H y K s p c B ran H c
11 ssintab B ran H c | B ran H c m o p m o p mAx T s ran mSubst T s o ran H c x y x m y mVars T s H x × mVars T s H y K s p c c B ran H c m o p m o p mAx T s ran mSubst T s o ran H c x y x m y mVars T s H x × mVars T s H y K s p c B ran H c
12 10 11 sylibr φ B ran H c | B ran H c m o p m o p mAx T s ran mSubst T s o ran H c x y x m y mVars T s H x × mVars T s H y K s p c
13 eqid mAx T = mAx T
14 eqid mSubst T = mSubst T
15 eqid mVars T = mVars T
16 1 2 3 4 5 6 7 13 14 15 mclsval φ K C B = c | B ran H c m o p m o p mAx T s ran mSubst T s o ran H c x y x m y mVars T s H x × mVars T s H y K s p c
17 12 16 sseqtrrd φ B ran H K C B