Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Mario Carneiro
Metamath formal systems
ssmclslem
Next ⟩
vhmcls
Metamath Proof Explorer
Ascii
Unicode
Theorem
ssmclslem
Description:
Lemma for
ssmcls
.
(Contributed by
Mario Carneiro
, 18-Jul-2016)
Ref
Expression
Hypotheses
mclsval.d
⊢
D
=
mDV
⁡
T
mclsval.e
⊢
E
=
mEx
⁡
T
mclsval.c
⊢
C
=
mCls
⁡
T
mclsval.1
⊢
φ
→
T
∈
mFS
mclsval.2
⊢
φ
→
K
⊆
D
mclsval.3
⊢
φ
→
B
⊆
E
ssmclslem.h
⊢
H
=
mVH
⁡
T
Assertion
ssmclslem
⊢
φ
→
B
∪
ran
⁡
H
⊆
K
C
B
Proof
Step
Hyp
Ref
Expression
1
mclsval.d
⊢
D
=
mDV
⁡
T
2
mclsval.e
⊢
E
=
mEx
⁡
T
3
mclsval.c
⊢
C
=
mCls
⁡
T
4
mclsval.1
⊢
φ
→
T
∈
mFS
5
mclsval.2
⊢
φ
→
K
⊆
D
6
mclsval.3
⊢
φ
→
B
⊆
E
7
ssmclslem.h
⊢
H
=
mVH
⁡
T
8
simpl
⊢
B
∪
ran
⁡
H
⊆
c
∧
∀
m
∀
o
∀
p
m
o
p
∈
mAx
⁡
T
→
∀
s
∈
ran
⁡
mSubst
⁡
T
s
o
∪
ran
⁡
H
⊆
c
∧
∀
x
∀
y
x
m
y
→
mVars
⁡
T
⁡
s
⁡
H
⁡
x
×
mVars
⁡
T
⁡
s
⁡
H
⁡
y
⊆
K
→
s
⁡
p
∈
c
→
B
∪
ran
⁡
H
⊆
c
9
8
a1i
⊢
φ
→
B
∪
ran
⁡
H
⊆
c
∧
∀
m
∀
o
∀
p
m
o
p
∈
mAx
⁡
T
→
∀
s
∈
ran
⁡
mSubst
⁡
T
s
o
∪
ran
⁡
H
⊆
c
∧
∀
x
∀
y
x
m
y
→
mVars
⁡
T
⁡
s
⁡
H
⁡
x
×
mVars
⁡
T
⁡
s
⁡
H
⁡
y
⊆
K
→
s
⁡
p
∈
c
→
B
∪
ran
⁡
H
⊆
c
10
9
alrimiv
⊢
φ
→
∀
c
B
∪
ran
⁡
H
⊆
c
∧
∀
m
∀
o
∀
p
m
o
p
∈
mAx
⁡
T
→
∀
s
∈
ran
⁡
mSubst
⁡
T
s
o
∪
ran
⁡
H
⊆
c
∧
∀
x
∀
y
x
m
y
→
mVars
⁡
T
⁡
s
⁡
H
⁡
x
×
mVars
⁡
T
⁡
s
⁡
H
⁡
y
⊆
K
→
s
⁡
p
∈
c
→
B
∪
ran
⁡
H
⊆
c
11
ssintab
⊢
B
∪
ran
⁡
H
⊆
⋂
c
|
B
∪
ran
⁡
H
⊆
c
∧
∀
m
∀
o
∀
p
m
o
p
∈
mAx
⁡
T
→
∀
s
∈
ran
⁡
mSubst
⁡
T
s
o
∪
ran
⁡
H
⊆
c
∧
∀
x
∀
y
x
m
y
→
mVars
⁡
T
⁡
s
⁡
H
⁡
x
×
mVars
⁡
T
⁡
s
⁡
H
⁡
y
⊆
K
→
s
⁡
p
∈
c
↔
∀
c
B
∪
ran
⁡
H
⊆
c
∧
∀
m
∀
o
∀
p
m
o
p
∈
mAx
⁡
T
→
∀
s
∈
ran
⁡
mSubst
⁡
T
s
o
∪
ran
⁡
H
⊆
c
∧
∀
x
∀
y
x
m
y
→
mVars
⁡
T
⁡
s
⁡
H
⁡
x
×
mVars
⁡
T
⁡
s
⁡
H
⁡
y
⊆
K
→
s
⁡
p
∈
c
→
B
∪
ran
⁡
H
⊆
c
12
10
11
sylibr
⊢
φ
→
B
∪
ran
⁡
H
⊆
⋂
c
|
B
∪
ran
⁡
H
⊆
c
∧
∀
m
∀
o
∀
p
m
o
p
∈
mAx
⁡
T
→
∀
s
∈
ran
⁡
mSubst
⁡
T
s
o
∪
ran
⁡
H
⊆
c
∧
∀
x
∀
y
x
m
y
→
mVars
⁡
T
⁡
s
⁡
H
⁡
x
×
mVars
⁡
T
⁡
s
⁡
H
⁡
y
⊆
K
→
s
⁡
p
∈
c
13
eqid
⊢
mAx
⁡
T
=
mAx
⁡
T
14
eqid
⊢
mSubst
⁡
T
=
mSubst
⁡
T
15
eqid
⊢
mVars
⁡
T
=
mVars
⁡
T
16
1
2
3
4
5
6
7
13
14
15
mclsval
⊢
φ
→
K
C
B
=
⋂
c
|
B
∪
ran
⁡
H
⊆
c
∧
∀
m
∀
o
∀
p
m
o
p
∈
mAx
⁡
T
→
∀
s
∈
ran
⁡
mSubst
⁡
T
s
o
∪
ran
⁡
H
⊆
c
∧
∀
x
∀
y
x
m
y
→
mVars
⁡
T
⁡
s
⁡
H
⁡
x
×
mVars
⁡
T
⁡
s
⁡
H
⁡
y
⊆
K
→
s
⁡
p
∈
c
17
12
16
sseqtrrd
⊢
φ
→
B
∪
ran
⁡
H
⊆
K
C
B