| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mclsval.d |  |-  D = ( mDV ` T ) | 
						
							| 2 |  | mclsval.e |  |-  E = ( mEx ` T ) | 
						
							| 3 |  | mclsval.c |  |-  C = ( mCls ` T ) | 
						
							| 4 |  | mclsval.1 |  |-  ( ph -> T e. mFS ) | 
						
							| 5 |  | mclsval.2 |  |-  ( ph -> K C_ D ) | 
						
							| 6 |  | mclsval.3 |  |-  ( ph -> B C_ E ) | 
						
							| 7 |  | ssmclslem.h |  |-  H = ( mVH ` T ) | 
						
							| 8 |  | simpl |  |-  ( ( ( B u. ran H ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran H ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( H ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( H ` y ) ) ) ) C_ K ) ) -> ( s ` p ) e. c ) ) ) -> ( B u. ran H ) C_ c ) | 
						
							| 9 | 8 | a1i |  |-  ( ph -> ( ( ( B u. ran H ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran H ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( H ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( H ` y ) ) ) ) C_ K ) ) -> ( s ` p ) e. c ) ) ) -> ( B u. ran H ) C_ c ) ) | 
						
							| 10 | 9 | alrimiv |  |-  ( ph -> A. c ( ( ( B u. ran H ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran H ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( H ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( H ` y ) ) ) ) C_ K ) ) -> ( s ` p ) e. c ) ) ) -> ( B u. ran H ) C_ c ) ) | 
						
							| 11 |  | ssintab |  |-  ( ( B u. ran H ) C_ |^| { c | ( ( B u. ran H ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran H ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( H ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( H ` y ) ) ) ) C_ K ) ) -> ( s ` p ) e. c ) ) ) } <-> A. c ( ( ( B u. ran H ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran H ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( H ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( H ` y ) ) ) ) C_ K ) ) -> ( s ` p ) e. c ) ) ) -> ( B u. ran H ) C_ c ) ) | 
						
							| 12 | 10 11 | sylibr |  |-  ( ph -> ( B u. ran H ) C_ |^| { c | ( ( B u. ran H ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran H ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( H ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( H ` y ) ) ) ) C_ K ) ) -> ( s ` p ) e. c ) ) ) } ) | 
						
							| 13 |  | eqid |  |-  ( mAx ` T ) = ( mAx ` T ) | 
						
							| 14 |  | eqid |  |-  ( mSubst ` T ) = ( mSubst ` T ) | 
						
							| 15 |  | eqid |  |-  ( mVars ` T ) = ( mVars ` T ) | 
						
							| 16 | 1 2 3 4 5 6 7 13 14 15 | mclsval |  |-  ( ph -> ( K C B ) = |^| { c | ( ( B u. ran H ) C_ c /\ A. m A. o A. p ( <. m , o , p >. e. ( mAx ` T ) -> A. s e. ran ( mSubst ` T ) ( ( ( s " ( o u. ran H ) ) C_ c /\ A. x A. y ( x m y -> ( ( ( mVars ` T ) ` ( s ` ( H ` x ) ) ) X. ( ( mVars ` T ) ` ( s ` ( H ` y ) ) ) ) C_ K ) ) -> ( s ` p ) e. c ) ) ) } ) | 
						
							| 17 | 12 16 | sseqtrrd |  |-  ( ph -> ( B u. ran H ) C_ ( K C B ) ) |