Description: The original expressions are also in the closure. (Contributed by Mario Carneiro, 18-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mclsval.d | |- D = ( mDV ` T ) | |
| mclsval.e | |- E = ( mEx ` T ) | ||
| mclsval.c | |- C = ( mCls ` T ) | ||
| mclsval.1 | |- ( ph -> T e. mFS ) | ||
| mclsval.2 | |- ( ph -> K C_ D ) | ||
| mclsval.3 | |- ( ph -> B C_ E ) | ||
| Assertion | ssmcls | |- ( ph -> B C_ ( K C B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mclsval.d | |- D = ( mDV ` T ) | |
| 2 | mclsval.e | |- E = ( mEx ` T ) | |
| 3 | mclsval.c | |- C = ( mCls ` T ) | |
| 4 | mclsval.1 | |- ( ph -> T e. mFS ) | |
| 5 | mclsval.2 | |- ( ph -> K C_ D ) | |
| 6 | mclsval.3 | |- ( ph -> B C_ E ) | |
| 7 | eqid | |- ( mVH ` T ) = ( mVH ` T ) | |
| 8 | 1 2 3 4 5 6 7 | ssmclslem | |- ( ph -> ( B u. ran ( mVH ` T ) ) C_ ( K C B ) ) | 
| 9 | 8 | unssad | |- ( ph -> B C_ ( K C B ) ) |