Metamath Proof Explorer


Theorem ssmcls

Description: The original expressions are also in the closure. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclsval.d
|- D = ( mDV ` T )
mclsval.e
|- E = ( mEx ` T )
mclsval.c
|- C = ( mCls ` T )
mclsval.1
|- ( ph -> T e. mFS )
mclsval.2
|- ( ph -> K C_ D )
mclsval.3
|- ( ph -> B C_ E )
Assertion ssmcls
|- ( ph -> B C_ ( K C B ) )

Proof

Step Hyp Ref Expression
1 mclsval.d
 |-  D = ( mDV ` T )
2 mclsval.e
 |-  E = ( mEx ` T )
3 mclsval.c
 |-  C = ( mCls ` T )
4 mclsval.1
 |-  ( ph -> T e. mFS )
5 mclsval.2
 |-  ( ph -> K C_ D )
6 mclsval.3
 |-  ( ph -> B C_ E )
7 eqid
 |-  ( mVH ` T ) = ( mVH ` T )
8 1 2 3 4 5 6 7 ssmclslem
 |-  ( ph -> ( B u. ran ( mVH ` T ) ) C_ ( K C B ) )
9 8 unssad
 |-  ( ph -> B C_ ( K C B ) )