Description: The original expressions are also in the closure. (Contributed by Mario Carneiro, 18-Jul-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mclsval.d | |- D = ( mDV ` T ) |
|
mclsval.e | |- E = ( mEx ` T ) |
||
mclsval.c | |- C = ( mCls ` T ) |
||
mclsval.1 | |- ( ph -> T e. mFS ) |
||
mclsval.2 | |- ( ph -> K C_ D ) |
||
mclsval.3 | |- ( ph -> B C_ E ) |
||
Assertion | ssmcls | |- ( ph -> B C_ ( K C B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mclsval.d | |- D = ( mDV ` T ) |
|
2 | mclsval.e | |- E = ( mEx ` T ) |
|
3 | mclsval.c | |- C = ( mCls ` T ) |
|
4 | mclsval.1 | |- ( ph -> T e. mFS ) |
|
5 | mclsval.2 | |- ( ph -> K C_ D ) |
|
6 | mclsval.3 | |- ( ph -> B C_ E ) |
|
7 | eqid | |- ( mVH ` T ) = ( mVH ` T ) |
|
8 | 1 2 3 4 5 6 7 | ssmclslem | |- ( ph -> ( B u. ran ( mVH ` T ) ) C_ ( K C B ) ) |
9 | 8 | unssad | |- ( ph -> B C_ ( K C B ) ) |