Metamath Proof Explorer


Theorem ssmcls

Description: The original expressions are also in the closure. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclsval.d D=mDVT
mclsval.e E=mExT
mclsval.c C=mClsT
mclsval.1 φTmFS
mclsval.2 φKD
mclsval.3 φBE
Assertion ssmcls φBKCB

Proof

Step Hyp Ref Expression
1 mclsval.d D=mDVT
2 mclsval.e E=mExT
3 mclsval.c C=mClsT
4 mclsval.1 φTmFS
5 mclsval.2 φKD
6 mclsval.3 φBE
7 eqid mVHT=mVHT
8 1 2 3 4 5 6 7 ssmclslem φBranmVHTKCB
9 8 unssad φBKCB