Metamath Proof Explorer


Theorem ssmcls

Description: The original expressions are also in the closure. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclsval.d 𝐷 = ( mDV ‘ 𝑇 )
mclsval.e 𝐸 = ( mEx ‘ 𝑇 )
mclsval.c 𝐶 = ( mCls ‘ 𝑇 )
mclsval.1 ( 𝜑𝑇 ∈ mFS )
mclsval.2 ( 𝜑𝐾𝐷 )
mclsval.3 ( 𝜑𝐵𝐸 )
Assertion ssmcls ( 𝜑𝐵 ⊆ ( 𝐾 𝐶 𝐵 ) )

Proof

Step Hyp Ref Expression
1 mclsval.d 𝐷 = ( mDV ‘ 𝑇 )
2 mclsval.e 𝐸 = ( mEx ‘ 𝑇 )
3 mclsval.c 𝐶 = ( mCls ‘ 𝑇 )
4 mclsval.1 ( 𝜑𝑇 ∈ mFS )
5 mclsval.2 ( 𝜑𝐾𝐷 )
6 mclsval.3 ( 𝜑𝐵𝐸 )
7 eqid ( mVH ‘ 𝑇 ) = ( mVH ‘ 𝑇 )
8 1 2 3 4 5 6 7 ssmclslem ( 𝜑 → ( 𝐵 ∪ ran ( mVH ‘ 𝑇 ) ) ⊆ ( 𝐾 𝐶 𝐵 ) )
9 8 unssad ( 𝜑𝐵 ⊆ ( 𝐾 𝐶 𝐵 ) )