| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mclsval.d |
|- D = ( mDV ` T ) |
| 2 |
|
mclsval.e |
|- E = ( mEx ` T ) |
| 3 |
|
mclsval.c |
|- C = ( mCls ` T ) |
| 4 |
|
mclsval.1 |
|- ( ph -> T e. mFS ) |
| 5 |
|
mclsval.2 |
|- ( ph -> K C_ D ) |
| 6 |
|
mclsval.3 |
|- ( ph -> B C_ E ) |
| 7 |
|
ssmclslem.h |
|- H = ( mVH ` T ) |
| 8 |
|
vhmcls.v |
|- V = ( mVR ` T ) |
| 9 |
|
vhmcls.3 |
|- ( ph -> X e. V ) |
| 10 |
1 2 3 4 5 6 7
|
ssmclslem |
|- ( ph -> ( B u. ran H ) C_ ( K C B ) ) |
| 11 |
10
|
unssbd |
|- ( ph -> ran H C_ ( K C B ) ) |
| 12 |
8 2 7
|
mvhf |
|- ( T e. mFS -> H : V --> E ) |
| 13 |
|
ffn |
|- ( H : V --> E -> H Fn V ) |
| 14 |
4 12 13
|
3syl |
|- ( ph -> H Fn V ) |
| 15 |
|
fnfvelrn |
|- ( ( H Fn V /\ X e. V ) -> ( H ` X ) e. ran H ) |
| 16 |
14 9 15
|
syl2anc |
|- ( ph -> ( H ` X ) e. ran H ) |
| 17 |
11 16
|
sseldd |
|- ( ph -> ( H ` X ) e. ( K C B ) ) |