Description: All variable hypotheses are in the closure. (Contributed by Mario Carneiro, 18-Jul-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mclsval.d | |- D = ( mDV ` T ) |
|
mclsval.e | |- E = ( mEx ` T ) |
||
mclsval.c | |- C = ( mCls ` T ) |
||
mclsval.1 | |- ( ph -> T e. mFS ) |
||
mclsval.2 | |- ( ph -> K C_ D ) |
||
mclsval.3 | |- ( ph -> B C_ E ) |
||
ssmclslem.h | |- H = ( mVH ` T ) |
||
vhmcls.v | |- V = ( mVR ` T ) |
||
vhmcls.3 | |- ( ph -> X e. V ) |
||
Assertion | vhmcls | |- ( ph -> ( H ` X ) e. ( K C B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mclsval.d | |- D = ( mDV ` T ) |
|
2 | mclsval.e | |- E = ( mEx ` T ) |
|
3 | mclsval.c | |- C = ( mCls ` T ) |
|
4 | mclsval.1 | |- ( ph -> T e. mFS ) |
|
5 | mclsval.2 | |- ( ph -> K C_ D ) |
|
6 | mclsval.3 | |- ( ph -> B C_ E ) |
|
7 | ssmclslem.h | |- H = ( mVH ` T ) |
|
8 | vhmcls.v | |- V = ( mVR ` T ) |
|
9 | vhmcls.3 | |- ( ph -> X e. V ) |
|
10 | 1 2 3 4 5 6 7 | ssmclslem | |- ( ph -> ( B u. ran H ) C_ ( K C B ) ) |
11 | 10 | unssbd | |- ( ph -> ran H C_ ( K C B ) ) |
12 | 8 2 7 | mvhf | |- ( T e. mFS -> H : V --> E ) |
13 | ffn | |- ( H : V --> E -> H Fn V ) |
|
14 | 4 12 13 | 3syl | |- ( ph -> H Fn V ) |
15 | fnfvelrn | |- ( ( H Fn V /\ X e. V ) -> ( H ` X ) e. ran H ) |
|
16 | 14 9 15 | syl2anc | |- ( ph -> ( H ` X ) e. ran H ) |
17 | 11 16 | sseldd | |- ( ph -> ( H ` X ) e. ( K C B ) ) |