Metamath Proof Explorer


Theorem vhmcls

Description: All variable hypotheses are in the closure. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclsval.d
|- D = ( mDV ` T )
mclsval.e
|- E = ( mEx ` T )
mclsval.c
|- C = ( mCls ` T )
mclsval.1
|- ( ph -> T e. mFS )
mclsval.2
|- ( ph -> K C_ D )
mclsval.3
|- ( ph -> B C_ E )
ssmclslem.h
|- H = ( mVH ` T )
vhmcls.v
|- V = ( mVR ` T )
vhmcls.3
|- ( ph -> X e. V )
Assertion vhmcls
|- ( ph -> ( H ` X ) e. ( K C B ) )

Proof

Step Hyp Ref Expression
1 mclsval.d
 |-  D = ( mDV ` T )
2 mclsval.e
 |-  E = ( mEx ` T )
3 mclsval.c
 |-  C = ( mCls ` T )
4 mclsval.1
 |-  ( ph -> T e. mFS )
5 mclsval.2
 |-  ( ph -> K C_ D )
6 mclsval.3
 |-  ( ph -> B C_ E )
7 ssmclslem.h
 |-  H = ( mVH ` T )
8 vhmcls.v
 |-  V = ( mVR ` T )
9 vhmcls.3
 |-  ( ph -> X e. V )
10 1 2 3 4 5 6 7 ssmclslem
 |-  ( ph -> ( B u. ran H ) C_ ( K C B ) )
11 10 unssbd
 |-  ( ph -> ran H C_ ( K C B ) )
12 8 2 7 mvhf
 |-  ( T e. mFS -> H : V --> E )
13 ffn
 |-  ( H : V --> E -> H Fn V )
14 4 12 13 3syl
 |-  ( ph -> H Fn V )
15 fnfvelrn
 |-  ( ( H Fn V /\ X e. V ) -> ( H ` X ) e. ran H )
16 14 9 15 syl2anc
 |-  ( ph -> ( H ` X ) e. ran H )
17 11 16 sseldd
 |-  ( ph -> ( H ` X ) e. ( K C B ) )