| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mclsval.d |  |-  D = ( mDV ` T ) | 
						
							| 2 |  | mclsval.e |  |-  E = ( mEx ` T ) | 
						
							| 3 |  | mclsval.c |  |-  C = ( mCls ` T ) | 
						
							| 4 |  | mclsval.1 |  |-  ( ph -> T e. mFS ) | 
						
							| 5 |  | mclsval.2 |  |-  ( ph -> K C_ D ) | 
						
							| 6 |  | mclsval.3 |  |-  ( ph -> B C_ E ) | 
						
							| 7 |  | ssmclslem.h |  |-  H = ( mVH ` T ) | 
						
							| 8 |  | vhmcls.v |  |-  V = ( mVR ` T ) | 
						
							| 9 |  | vhmcls.3 |  |-  ( ph -> X e. V ) | 
						
							| 10 | 1 2 3 4 5 6 7 | ssmclslem |  |-  ( ph -> ( B u. ran H ) C_ ( K C B ) ) | 
						
							| 11 | 10 | unssbd |  |-  ( ph -> ran H C_ ( K C B ) ) | 
						
							| 12 | 8 2 7 | mvhf |  |-  ( T e. mFS -> H : V --> E ) | 
						
							| 13 |  | ffn |  |-  ( H : V --> E -> H Fn V ) | 
						
							| 14 | 4 12 13 | 3syl |  |-  ( ph -> H Fn V ) | 
						
							| 15 |  | fnfvelrn |  |-  ( ( H Fn V /\ X e. V ) -> ( H ` X ) e. ran H ) | 
						
							| 16 | 14 9 15 | syl2anc |  |-  ( ph -> ( H ` X ) e. ran H ) | 
						
							| 17 | 11 16 | sseldd |  |-  ( ph -> ( H ` X ) e. ( K C B ) ) |