Description: Induction theorem for closure: any other set Q closed under the axioms and the hypotheses contains all the elements of the closure. (Contributed by Mario Carneiro, 18-Jul-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mclsval.d | |
|
mclsval.e | |
||
mclsval.c | |
||
mclsval.1 | |
||
mclsval.2 | |
||
mclsval.3 | |
||
mclsax.a | |
||
mclsax.l | |
||
mclsax.v | |
||
mclsax.h | |
||
mclsax.w | |
||
mclsind.4 | |
||
mclsind.5 | |
||
mclsind.6 | |
||
Assertion | mclsind | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mclsval.d | |
|
2 | mclsval.e | |
|
3 | mclsval.c | |
|
4 | mclsval.1 | |
|
5 | mclsval.2 | |
|
6 | mclsval.3 | |
|
7 | mclsax.a | |
|
8 | mclsax.l | |
|
9 | mclsax.v | |
|
10 | mclsax.h | |
|
11 | mclsax.w | |
|
12 | mclsind.4 | |
|
13 | mclsind.5 | |
|
14 | mclsind.6 | |
|
15 | 1 2 3 4 5 6 10 7 8 11 | mclsval | |
16 | 6 12 | ssind | |
17 | 9 2 10 | mvhf | |
18 | 4 17 | syl | |
19 | 18 | ffnd | |
20 | 18 | ffvelcdmda | |
21 | 20 13 | elind | |
22 | 21 | ralrimiva | |
23 | ffnfv | |
|
24 | 19 22 23 | sylanbrc | |
25 | 24 | frnd | |
26 | 16 25 | unssd | |
27 | id | |
|
28 | inss2 | |
|
29 | 27 28 | sstrdi | |
30 | 4 | adantr | |
31 | eqid | |
|
32 | 9 31 8 2 | msubff | |
33 | frn | |
|
34 | 30 32 33 | 3syl | |
35 | simpr2 | |
|
36 | 34 35 | sseldd | |
37 | elmapi | |
|
38 | 36 37 | syl | |
39 | eqid | |
|
40 | 7 39 | maxsta | |
41 | 30 40 | syl | |
42 | eqid | |
|
43 | 42 39 | mstapst | |
44 | 41 43 | sstrdi | |
45 | simpr1 | |
|
46 | 44 45 | sseldd | |
47 | 1 2 42 | elmpst | |
48 | 47 | simp3bi | |
49 | 46 48 | syl | |
50 | 38 49 | ffvelcdmd | |
51 | 50 | 3adant3 | |
52 | 51 14 | elind | |
53 | 52 | 3exp | |
54 | 53 | 3expd | |
55 | 54 | imp31 | |
56 | 29 55 | syl5 | |
57 | 56 | impd | |
58 | 57 | ralrimiva | |
59 | 58 | ex | |
60 | 59 | alrimiv | |
61 | 60 | alrimivv | |
62 | 2 | fvexi | |
63 | 62 | inex1 | |
64 | sseq2 | |
|
65 | sseq2 | |
|
66 | 65 | anbi1d | |
67 | eleq2 | |
|
68 | 66 67 | imbi12d | |
69 | 68 | ralbidv | |
70 | 69 | imbi2d | |
71 | 70 | albidv | |
72 | 71 | 2albidv | |
73 | 64 72 | anbi12d | |
74 | 63 73 | elab | |
75 | 26 61 74 | sylanbrc | |
76 | intss1 | |
|
77 | 75 76 | syl | |
78 | 77 28 | sstrdi | |
79 | 15 78 | eqsstrd | |