Metamath Proof Explorer


Theorem mclsind

Description: Induction theorem for closure: any other set Q closed under the axioms and the hypotheses contains all the elements of the closure. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclsval.d D = mDV T
mclsval.e E = mEx T
mclsval.c C = mCls T
mclsval.1 φ T mFS
mclsval.2 φ K D
mclsval.3 φ B E
mclsax.a A = mAx T
mclsax.l L = mSubst T
mclsax.v V = mVR T
mclsax.h H = mVH T
mclsax.w W = mVars T
mclsind.4 φ B Q
mclsind.5 φ v V H v Q
mclsind.6 φ m o p A s ran L s o ran H Q x y x m y W s H x × W s H y K s p Q
Assertion mclsind φ K C B Q

Proof

Step Hyp Ref Expression
1 mclsval.d D = mDV T
2 mclsval.e E = mEx T
3 mclsval.c C = mCls T
4 mclsval.1 φ T mFS
5 mclsval.2 φ K D
6 mclsval.3 φ B E
7 mclsax.a A = mAx T
8 mclsax.l L = mSubst T
9 mclsax.v V = mVR T
10 mclsax.h H = mVH T
11 mclsax.w W = mVars T
12 mclsind.4 φ B Q
13 mclsind.5 φ v V H v Q
14 mclsind.6 φ m o p A s ran L s o ran H Q x y x m y W s H x × W s H y K s p Q
15 1 2 3 4 5 6 10 7 8 11 mclsval φ K C B = c | B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c
16 6 12 ssind φ B E Q
17 9 2 10 mvhf T mFS H : V E
18 4 17 syl φ H : V E
19 18 ffnd φ H Fn V
20 18 ffvelrnda φ v V H v E
21 20 13 elind φ v V H v E Q
22 21 ralrimiva φ v V H v E Q
23 ffnfv H : V E Q H Fn V v V H v E Q
24 19 22 23 sylanbrc φ H : V E Q
25 24 frnd φ ran H E Q
26 16 25 unssd φ B ran H E Q
27 id s o ran H E Q s o ran H E Q
28 inss2 E Q Q
29 27 28 sstrdi s o ran H E Q s o ran H Q
30 4 adantr φ m o p A s ran L s o ran H Q T mFS
31 eqid mREx T = mREx T
32 9 31 8 2 msubff T mFS L : mREx T 𝑝𝑚 V E E
33 frn L : mREx T 𝑝𝑚 V E E ran L E E
34 30 32 33 3syl φ m o p A s ran L s o ran H Q ran L E E
35 simpr2 φ m o p A s ran L s o ran H Q s ran L
36 34 35 sseldd φ m o p A s ran L s o ran H Q s E E
37 elmapi s E E s : E E
38 36 37 syl φ m o p A s ran L s o ran H Q s : E E
39 eqid mStat T = mStat T
40 7 39 maxsta T mFS A mStat T
41 30 40 syl φ m o p A s ran L s o ran H Q A mStat T
42 eqid mPreSt T = mPreSt T
43 42 39 mstapst mStat T mPreSt T
44 41 43 sstrdi φ m o p A s ran L s o ran H Q A mPreSt T
45 simpr1 φ m o p A s ran L s o ran H Q m o p A
46 44 45 sseldd φ m o p A s ran L s o ran H Q m o p mPreSt T
47 1 2 42 elmpst m o p mPreSt T m D m -1 = m o E o Fin p E
48 47 simp3bi m o p mPreSt T p E
49 46 48 syl φ m o p A s ran L s o ran H Q p E
50 38 49 ffvelrnd φ m o p A s ran L s o ran H Q s p E
51 50 3adant3 φ m o p A s ran L s o ran H Q x y x m y W s H x × W s H y K s p E
52 51 14 elind φ m o p A s ran L s o ran H Q x y x m y W s H x × W s H y K s p E Q
53 52 3exp φ m o p A s ran L s o ran H Q x y x m y W s H x × W s H y K s p E Q
54 53 3expd φ m o p A s ran L s o ran H Q x y x m y W s H x × W s H y K s p E Q
55 54 imp31 φ m o p A s ran L s o ran H Q x y x m y W s H x × W s H y K s p E Q
56 29 55 syl5 φ m o p A s ran L s o ran H E Q x y x m y W s H x × W s H y K s p E Q
57 56 impd φ m o p A s ran L s o ran H E Q x y x m y W s H x × W s H y K s p E Q
58 57 ralrimiva φ m o p A s ran L s o ran H E Q x y x m y W s H x × W s H y K s p E Q
59 58 ex φ m o p A s ran L s o ran H E Q x y x m y W s H x × W s H y K s p E Q
60 59 alrimiv φ p m o p A s ran L s o ran H E Q x y x m y W s H x × W s H y K s p E Q
61 60 alrimivv φ m o p m o p A s ran L s o ran H E Q x y x m y W s H x × W s H y K s p E Q
62 2 fvexi E V
63 62 inex1 E Q V
64 sseq2 c = E Q B ran H c B ran H E Q
65 sseq2 c = E Q s o ran H c s o ran H E Q
66 65 anbi1d c = E Q s o ran H c x y x m y W s H x × W s H y K s o ran H E Q x y x m y W s H x × W s H y K
67 eleq2 c = E Q s p c s p E Q
68 66 67 imbi12d c = E Q s o ran H c x y x m y W s H x × W s H y K s p c s o ran H E Q x y x m y W s H x × W s H y K s p E Q
69 68 ralbidv c = E Q s ran L s o ran H c x y x m y W s H x × W s H y K s p c s ran L s o ran H E Q x y x m y W s H x × W s H y K s p E Q
70 69 imbi2d c = E Q m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c m o p A s ran L s o ran H E Q x y x m y W s H x × W s H y K s p E Q
71 70 albidv c = E Q p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c p m o p A s ran L s o ran H E Q x y x m y W s H x × W s H y K s p E Q
72 71 2albidv c = E Q m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c m o p m o p A s ran L s o ran H E Q x y x m y W s H x × W s H y K s p E Q
73 64 72 anbi12d c = E Q B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c B ran H E Q m o p m o p A s ran L s o ran H E Q x y x m y W s H x × W s H y K s p E Q
74 63 73 elab E Q c | B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c B ran H E Q m o p m o p A s ran L s o ran H E Q x y x m y W s H x × W s H y K s p E Q
75 26 61 74 sylanbrc φ E Q c | B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c
76 intss1 E Q c | B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c c | B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c E Q
77 75 76 syl φ c | B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c E Q
78 77 28 sstrdi φ c | B ran H c m o p m o p A s ran L s o ran H c x y x m y W s H x × W s H y K s p c Q
79 15 78 eqsstrd φ K C B Q