Metamath Proof Explorer


Theorem mclsind

Description: Induction theorem for closure: any other set Q closed under the axioms and the hypotheses contains all the elements of the closure. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclsval.d D=mDVT
mclsval.e E=mExT
mclsval.c C=mClsT
mclsval.1 φTmFS
mclsval.2 φKD
mclsval.3 φBE
mclsax.a A=mAxT
mclsax.l L=mSubstT
mclsax.v V=mVRT
mclsax.h H=mVHT
mclsax.w W=mVarsT
mclsind.4 φBQ
mclsind.5 φvVHvQ
mclsind.6 φmopAsranLsoranHQxyxmyWsHx×WsHyKspQ
Assertion mclsind φKCBQ

Proof

Step Hyp Ref Expression
1 mclsval.d D=mDVT
2 mclsval.e E=mExT
3 mclsval.c C=mClsT
4 mclsval.1 φTmFS
5 mclsval.2 φKD
6 mclsval.3 φBE
7 mclsax.a A=mAxT
8 mclsax.l L=mSubstT
9 mclsax.v V=mVRT
10 mclsax.h H=mVHT
11 mclsax.w W=mVarsT
12 mclsind.4 φBQ
13 mclsind.5 φvVHvQ
14 mclsind.6 φmopAsranLsoranHQxyxmyWsHx×WsHyKspQ
15 1 2 3 4 5 6 10 7 8 11 mclsval φKCB=c|BranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspc
16 6 12 ssind φBEQ
17 9 2 10 mvhf TmFSH:VE
18 4 17 syl φH:VE
19 18 ffnd φHFnV
20 18 ffvelcdmda φvVHvE
21 20 13 elind φvVHvEQ
22 21 ralrimiva φvVHvEQ
23 ffnfv H:VEQHFnVvVHvEQ
24 19 22 23 sylanbrc φH:VEQ
25 24 frnd φranHEQ
26 16 25 unssd φBranHEQ
27 id soranHEQsoranHEQ
28 inss2 EQQ
29 27 28 sstrdi soranHEQsoranHQ
30 4 adantr φmopAsranLsoranHQTmFS
31 eqid mRExT=mRExT
32 9 31 8 2 msubff TmFSL:mRExT𝑝𝑚VEE
33 frn L:mRExT𝑝𝑚VEEranLEE
34 30 32 33 3syl φmopAsranLsoranHQranLEE
35 simpr2 φmopAsranLsoranHQsranL
36 34 35 sseldd φmopAsranLsoranHQsEE
37 elmapi sEEs:EE
38 36 37 syl φmopAsranLsoranHQs:EE
39 eqid mStatT=mStatT
40 7 39 maxsta TmFSAmStatT
41 30 40 syl φmopAsranLsoranHQAmStatT
42 eqid mPreStT=mPreStT
43 42 39 mstapst mStatTmPreStT
44 41 43 sstrdi φmopAsranLsoranHQAmPreStT
45 simpr1 φmopAsranLsoranHQmopA
46 44 45 sseldd φmopAsranLsoranHQmopmPreStT
47 1 2 42 elmpst mopmPreStTmDm-1=moEoFinpE
48 47 simp3bi mopmPreStTpE
49 46 48 syl φmopAsranLsoranHQpE
50 38 49 ffvelcdmd φmopAsranLsoranHQspE
51 50 3adant3 φmopAsranLsoranHQxyxmyWsHx×WsHyKspE
52 51 14 elind φmopAsranLsoranHQxyxmyWsHx×WsHyKspEQ
53 52 3exp φmopAsranLsoranHQxyxmyWsHx×WsHyKspEQ
54 53 3expd φmopAsranLsoranHQxyxmyWsHx×WsHyKspEQ
55 54 imp31 φmopAsranLsoranHQxyxmyWsHx×WsHyKspEQ
56 29 55 syl5 φmopAsranLsoranHEQxyxmyWsHx×WsHyKspEQ
57 56 impd φmopAsranLsoranHEQxyxmyWsHx×WsHyKspEQ
58 57 ralrimiva φmopAsranLsoranHEQxyxmyWsHx×WsHyKspEQ
59 58 ex φmopAsranLsoranHEQxyxmyWsHx×WsHyKspEQ
60 59 alrimiv φpmopAsranLsoranHEQxyxmyWsHx×WsHyKspEQ
61 60 alrimivv φmopmopAsranLsoranHEQxyxmyWsHx×WsHyKspEQ
62 2 fvexi EV
63 62 inex1 EQV
64 sseq2 c=EQBranHcBranHEQ
65 sseq2 c=EQsoranHcsoranHEQ
66 65 anbi1d c=EQsoranHcxyxmyWsHx×WsHyKsoranHEQxyxmyWsHx×WsHyK
67 eleq2 c=EQspcspEQ
68 66 67 imbi12d c=EQsoranHcxyxmyWsHx×WsHyKspcsoranHEQxyxmyWsHx×WsHyKspEQ
69 68 ralbidv c=EQsranLsoranHcxyxmyWsHx×WsHyKspcsranLsoranHEQxyxmyWsHx×WsHyKspEQ
70 69 imbi2d c=EQmopAsranLsoranHcxyxmyWsHx×WsHyKspcmopAsranLsoranHEQxyxmyWsHx×WsHyKspEQ
71 70 albidv c=EQpmopAsranLsoranHcxyxmyWsHx×WsHyKspcpmopAsranLsoranHEQxyxmyWsHx×WsHyKspEQ
72 71 2albidv c=EQmopmopAsranLsoranHcxyxmyWsHx×WsHyKspcmopmopAsranLsoranHEQxyxmyWsHx×WsHyKspEQ
73 64 72 anbi12d c=EQBranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspcBranHEQmopmopAsranLsoranHEQxyxmyWsHx×WsHyKspEQ
74 63 73 elab EQc|BranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspcBranHEQmopmopAsranLsoranHEQxyxmyWsHx×WsHyKspEQ
75 26 61 74 sylanbrc φEQc|BranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspc
76 intss1 EQc|BranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspcc|BranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspcEQ
77 75 76 syl φc|BranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspcEQ
78 77 28 sstrdi φc|BranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspcQ
79 15 78 eqsstrd φKCBQ