Step |
Hyp |
Ref |
Expression |
1 |
|
mclsval.d |
|
2 |
|
mclsval.e |
|
3 |
|
mclsval.c |
|
4 |
|
mclsval.1 |
|
5 |
|
mclsval.2 |
|
6 |
|
mclsval.3 |
|
7 |
|
mclsax.a |
|
8 |
|
mclsax.l |
|
9 |
|
mclsax.v |
|
10 |
|
mclsax.h |
|
11 |
|
mclsax.w |
|
12 |
|
mclsind.4 |
|
13 |
|
mclsind.5 |
|
14 |
|
mclsind.6 |
|
15 |
1 2 3 4 5 6 10 7 8 11
|
mclsval |
|
16 |
6 12
|
ssind |
|
17 |
9 2 10
|
mvhf |
|
18 |
4 17
|
syl |
|
19 |
18
|
ffnd |
|
20 |
18
|
ffvelrnda |
|
21 |
20 13
|
elind |
|
22 |
21
|
ralrimiva |
|
23 |
|
ffnfv |
|
24 |
19 22 23
|
sylanbrc |
|
25 |
24
|
frnd |
|
26 |
16 25
|
unssd |
|
27 |
|
id |
|
28 |
|
inss2 |
|
29 |
27 28
|
sstrdi |
|
30 |
4
|
adantr |
|
31 |
|
eqid |
|
32 |
9 31 8 2
|
msubff |
|
33 |
|
frn |
|
34 |
30 32 33
|
3syl |
|
35 |
|
simpr2 |
|
36 |
34 35
|
sseldd |
|
37 |
|
elmapi |
|
38 |
36 37
|
syl |
|
39 |
|
eqid |
|
40 |
7 39
|
maxsta |
|
41 |
30 40
|
syl |
|
42 |
|
eqid |
|
43 |
42 39
|
mstapst |
|
44 |
41 43
|
sstrdi |
|
45 |
|
simpr1 |
|
46 |
44 45
|
sseldd |
|
47 |
1 2 42
|
elmpst |
|
48 |
47
|
simp3bi |
|
49 |
46 48
|
syl |
|
50 |
38 49
|
ffvelrnd |
|
51 |
50
|
3adant3 |
|
52 |
51 14
|
elind |
|
53 |
52
|
3exp |
|
54 |
53
|
3expd |
|
55 |
54
|
imp31 |
|
56 |
29 55
|
syl5 |
|
57 |
56
|
impd |
|
58 |
57
|
ralrimiva |
|
59 |
58
|
ex |
|
60 |
59
|
alrimiv |
|
61 |
60
|
alrimivv |
|
62 |
2
|
fvexi |
|
63 |
62
|
inex1 |
|
64 |
|
sseq2 |
|
65 |
|
sseq2 |
|
66 |
65
|
anbi1d |
|
67 |
|
eleq2 |
|
68 |
66 67
|
imbi12d |
|
69 |
68
|
ralbidv |
|
70 |
69
|
imbi2d |
|
71 |
70
|
albidv |
|
72 |
71
|
2albidv |
|
73 |
64 72
|
anbi12d |
|
74 |
63 73
|
elab |
|
75 |
26 61 74
|
sylanbrc |
|
76 |
|
intss1 |
|
77 |
75 76
|
syl |
|
78 |
77 28
|
sstrdi |
|
79 |
15 78
|
eqsstrd |
|