| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mclsval.d | ⊢ 𝐷  =  ( mDV ‘ 𝑇 ) | 
						
							| 2 |  | mclsval.e | ⊢ 𝐸  =  ( mEx ‘ 𝑇 ) | 
						
							| 3 |  | mclsval.c | ⊢ 𝐶  =  ( mCls ‘ 𝑇 ) | 
						
							| 4 |  | mclsval.1 | ⊢ ( 𝜑  →  𝑇  ∈  mFS ) | 
						
							| 5 |  | mclsval.2 | ⊢ ( 𝜑  →  𝐾  ⊆  𝐷 ) | 
						
							| 6 |  | mclsval.3 | ⊢ ( 𝜑  →  𝐵  ⊆  𝐸 ) | 
						
							| 7 |  | mclsax.a | ⊢ 𝐴  =  ( mAx ‘ 𝑇 ) | 
						
							| 8 |  | mclsax.l | ⊢ 𝐿  =  ( mSubst ‘ 𝑇 ) | 
						
							| 9 |  | mclsax.v | ⊢ 𝑉  =  ( mVR ‘ 𝑇 ) | 
						
							| 10 |  | mclsax.h | ⊢ 𝐻  =  ( mVH ‘ 𝑇 ) | 
						
							| 11 |  | mclsax.w | ⊢ 𝑊  =  ( mVars ‘ 𝑇 ) | 
						
							| 12 |  | mclsind.4 | ⊢ ( 𝜑  →  𝐵  ⊆  𝑄 ) | 
						
							| 13 |  | mclsind.5 | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  →  ( 𝐻 ‘ 𝑣 )  ∈  𝑄 ) | 
						
							| 14 |  | mclsind.6 | ⊢ ( ( 𝜑  ∧  ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  ∧  𝑠  ∈  ran  𝐿  ∧  ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑄 )  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑄 ) | 
						
							| 15 | 1 2 3 4 5 6 10 7 8 11 | mclsval | ⊢ ( 𝜑  →  ( 𝐾 𝐶 𝐵 )  =  ∩  { 𝑐  ∣  ( ( 𝐵  ∪  ran  𝐻 )  ⊆  𝑐  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝐿 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 ) ) ) } ) | 
						
							| 16 | 6 12 | ssind | ⊢ ( 𝜑  →  𝐵  ⊆  ( 𝐸  ∩  𝑄 ) ) | 
						
							| 17 | 9 2 10 | mvhf | ⊢ ( 𝑇  ∈  mFS  →  𝐻 : 𝑉 ⟶ 𝐸 ) | 
						
							| 18 | 4 17 | syl | ⊢ ( 𝜑  →  𝐻 : 𝑉 ⟶ 𝐸 ) | 
						
							| 19 | 18 | ffnd | ⊢ ( 𝜑  →  𝐻  Fn  𝑉 ) | 
						
							| 20 | 18 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  →  ( 𝐻 ‘ 𝑣 )  ∈  𝐸 ) | 
						
							| 21 | 20 13 | elind | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  →  ( 𝐻 ‘ 𝑣 )  ∈  ( 𝐸  ∩  𝑄 ) ) | 
						
							| 22 | 21 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑣  ∈  𝑉 ( 𝐻 ‘ 𝑣 )  ∈  ( 𝐸  ∩  𝑄 ) ) | 
						
							| 23 |  | ffnfv | ⊢ ( 𝐻 : 𝑉 ⟶ ( 𝐸  ∩  𝑄 )  ↔  ( 𝐻  Fn  𝑉  ∧  ∀ 𝑣  ∈  𝑉 ( 𝐻 ‘ 𝑣 )  ∈  ( 𝐸  ∩  𝑄 ) ) ) | 
						
							| 24 | 19 22 23 | sylanbrc | ⊢ ( 𝜑  →  𝐻 : 𝑉 ⟶ ( 𝐸  ∩  𝑄 ) ) | 
						
							| 25 | 24 | frnd | ⊢ ( 𝜑  →  ran  𝐻  ⊆  ( 𝐸  ∩  𝑄 ) ) | 
						
							| 26 | 16 25 | unssd | ⊢ ( 𝜑  →  ( 𝐵  ∪  ran  𝐻 )  ⊆  ( 𝐸  ∩  𝑄 ) ) | 
						
							| 27 |  | id | ⊢ ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  ( 𝐸  ∩  𝑄 )  →  ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  ( 𝐸  ∩  𝑄 ) ) | 
						
							| 28 |  | inss2 | ⊢ ( 𝐸  ∩  𝑄 )  ⊆  𝑄 | 
						
							| 29 | 27 28 | sstrdi | ⊢ ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  ( 𝐸  ∩  𝑄 )  →  ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑄 ) | 
						
							| 30 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  ∧  𝑠  ∈  ran  𝐿  ∧  ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑄 ) )  →  𝑇  ∈  mFS ) | 
						
							| 31 |  | eqid | ⊢ ( mREx ‘ 𝑇 )  =  ( mREx ‘ 𝑇 ) | 
						
							| 32 | 9 31 8 2 | msubff | ⊢ ( 𝑇  ∈  mFS  →  𝐿 : ( ( mREx ‘ 𝑇 )  ↑pm  𝑉 ) ⟶ ( 𝐸  ↑m  𝐸 ) ) | 
						
							| 33 |  | frn | ⊢ ( 𝐿 : ( ( mREx ‘ 𝑇 )  ↑pm  𝑉 ) ⟶ ( 𝐸  ↑m  𝐸 )  →  ran  𝐿  ⊆  ( 𝐸  ↑m  𝐸 ) ) | 
						
							| 34 | 30 32 33 | 3syl | ⊢ ( ( 𝜑  ∧  ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  ∧  𝑠  ∈  ran  𝐿  ∧  ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑄 ) )  →  ran  𝐿  ⊆  ( 𝐸  ↑m  𝐸 ) ) | 
						
							| 35 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  ∧  𝑠  ∈  ran  𝐿  ∧  ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑄 ) )  →  𝑠  ∈  ran  𝐿 ) | 
						
							| 36 | 34 35 | sseldd | ⊢ ( ( 𝜑  ∧  ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  ∧  𝑠  ∈  ran  𝐿  ∧  ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑄 ) )  →  𝑠  ∈  ( 𝐸  ↑m  𝐸 ) ) | 
						
							| 37 |  | elmapi | ⊢ ( 𝑠  ∈  ( 𝐸  ↑m  𝐸 )  →  𝑠 : 𝐸 ⟶ 𝐸 ) | 
						
							| 38 | 36 37 | syl | ⊢ ( ( 𝜑  ∧  ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  ∧  𝑠  ∈  ran  𝐿  ∧  ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑄 ) )  →  𝑠 : 𝐸 ⟶ 𝐸 ) | 
						
							| 39 |  | eqid | ⊢ ( mStat ‘ 𝑇 )  =  ( mStat ‘ 𝑇 ) | 
						
							| 40 | 7 39 | maxsta | ⊢ ( 𝑇  ∈  mFS  →  𝐴  ⊆  ( mStat ‘ 𝑇 ) ) | 
						
							| 41 | 30 40 | syl | ⊢ ( ( 𝜑  ∧  ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  ∧  𝑠  ∈  ran  𝐿  ∧  ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑄 ) )  →  𝐴  ⊆  ( mStat ‘ 𝑇 ) ) | 
						
							| 42 |  | eqid | ⊢ ( mPreSt ‘ 𝑇 )  =  ( mPreSt ‘ 𝑇 ) | 
						
							| 43 | 42 39 | mstapst | ⊢ ( mStat ‘ 𝑇 )  ⊆  ( mPreSt ‘ 𝑇 ) | 
						
							| 44 | 41 43 | sstrdi | ⊢ ( ( 𝜑  ∧  ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  ∧  𝑠  ∈  ran  𝐿  ∧  ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑄 ) )  →  𝐴  ⊆  ( mPreSt ‘ 𝑇 ) ) | 
						
							| 45 |  | simpr1 | ⊢ ( ( 𝜑  ∧  ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  ∧  𝑠  ∈  ran  𝐿  ∧  ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑄 ) )  →  〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴 ) | 
						
							| 46 | 44 45 | sseldd | ⊢ ( ( 𝜑  ∧  ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  ∧  𝑠  ∈  ran  𝐿  ∧  ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑄 ) )  →  〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  ( mPreSt ‘ 𝑇 ) ) | 
						
							| 47 | 1 2 42 | elmpst | ⊢ ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  ( mPreSt ‘ 𝑇 )  ↔  ( ( 𝑚  ⊆  𝐷  ∧  ◡ 𝑚  =  𝑚 )  ∧  ( 𝑜  ⊆  𝐸  ∧  𝑜  ∈  Fin )  ∧  𝑝  ∈  𝐸 ) ) | 
						
							| 48 | 47 | simp3bi | ⊢ ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  ( mPreSt ‘ 𝑇 )  →  𝑝  ∈  𝐸 ) | 
						
							| 49 | 46 48 | syl | ⊢ ( ( 𝜑  ∧  ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  ∧  𝑠  ∈  ran  𝐿  ∧  ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑄 ) )  →  𝑝  ∈  𝐸 ) | 
						
							| 50 | 38 49 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  ∧  𝑠  ∈  ran  𝐿  ∧  ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑄 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝐸 ) | 
						
							| 51 | 50 | 3adant3 | ⊢ ( ( 𝜑  ∧  ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  ∧  𝑠  ∈  ran  𝐿  ∧  ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑄 )  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝐸 ) | 
						
							| 52 | 51 14 | elind | ⊢ ( ( 𝜑  ∧  ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  ∧  𝑠  ∈  ran  𝐿  ∧  ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑄 )  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  ( 𝐸  ∩  𝑄 ) ) | 
						
							| 53 | 52 | 3exp | ⊢ ( 𝜑  →  ( ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  ∧  𝑠  ∈  ran  𝐿  ∧  ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑄 )  →  ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 )  →  ( 𝑠 ‘ 𝑝 )  ∈  ( 𝐸  ∩  𝑄 ) ) ) ) | 
						
							| 54 | 53 | 3expd | ⊢ ( 𝜑  →  ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ( 𝑠  ∈  ran  𝐿  →  ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑄  →  ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 )  →  ( 𝑠 ‘ 𝑝 )  ∈  ( 𝐸  ∩  𝑄 ) ) ) ) ) ) | 
						
							| 55 | 54 | imp31 | ⊢ ( ( ( 𝜑  ∧  〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴 )  ∧  𝑠  ∈  ran  𝐿 )  →  ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑄  →  ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 )  →  ( 𝑠 ‘ 𝑝 )  ∈  ( 𝐸  ∩  𝑄 ) ) ) ) | 
						
							| 56 | 29 55 | syl5 | ⊢ ( ( ( 𝜑  ∧  〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴 )  ∧  𝑠  ∈  ran  𝐿 )  →  ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  ( 𝐸  ∩  𝑄 )  →  ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 )  →  ( 𝑠 ‘ 𝑝 )  ∈  ( 𝐸  ∩  𝑄 ) ) ) ) | 
						
							| 57 | 56 | impd | ⊢ ( ( ( 𝜑  ∧  〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴 )  ∧  𝑠  ∈  ran  𝐿 )  →  ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  ( 𝐸  ∩  𝑄 )  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  ( 𝐸  ∩  𝑄 ) ) ) | 
						
							| 58 | 57 | ralrimiva | ⊢ ( ( 𝜑  ∧  〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴 )  →  ∀ 𝑠  ∈  ran  𝐿 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  ( 𝐸  ∩  𝑄 )  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  ( 𝐸  ∩  𝑄 ) ) ) | 
						
							| 59 | 58 | ex | ⊢ ( 𝜑  →  ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝐿 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  ( 𝐸  ∩  𝑄 )  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  ( 𝐸  ∩  𝑄 ) ) ) ) | 
						
							| 60 | 59 | alrimiv | ⊢ ( 𝜑  →  ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝐿 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  ( 𝐸  ∩  𝑄 )  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  ( 𝐸  ∩  𝑄 ) ) ) ) | 
						
							| 61 | 60 | alrimivv | ⊢ ( 𝜑  →  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝐿 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  ( 𝐸  ∩  𝑄 )  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  ( 𝐸  ∩  𝑄 ) ) ) ) | 
						
							| 62 | 2 | fvexi | ⊢ 𝐸  ∈  V | 
						
							| 63 | 62 | inex1 | ⊢ ( 𝐸  ∩  𝑄 )  ∈  V | 
						
							| 64 |  | sseq2 | ⊢ ( 𝑐  =  ( 𝐸  ∩  𝑄 )  →  ( ( 𝐵  ∪  ran  𝐻 )  ⊆  𝑐  ↔  ( 𝐵  ∪  ran  𝐻 )  ⊆  ( 𝐸  ∩  𝑄 ) ) ) | 
						
							| 65 |  | sseq2 | ⊢ ( 𝑐  =  ( 𝐸  ∩  𝑄 )  →  ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ↔  ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  ( 𝐸  ∩  𝑄 ) ) ) | 
						
							| 66 | 65 | anbi1d | ⊢ ( 𝑐  =  ( 𝐸  ∩  𝑄 )  →  ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  ↔  ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  ( 𝐸  ∩  𝑄 )  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) ) ) ) | 
						
							| 67 |  | eleq2 | ⊢ ( 𝑐  =  ( 𝐸  ∩  𝑄 )  →  ( ( 𝑠 ‘ 𝑝 )  ∈  𝑐  ↔  ( 𝑠 ‘ 𝑝 )  ∈  ( 𝐸  ∩  𝑄 ) ) ) | 
						
							| 68 | 66 67 | imbi12d | ⊢ ( 𝑐  =  ( 𝐸  ∩  𝑄 )  →  ( ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 )  ↔  ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  ( 𝐸  ∩  𝑄 )  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  ( 𝐸  ∩  𝑄 ) ) ) ) | 
						
							| 69 | 68 | ralbidv | ⊢ ( 𝑐  =  ( 𝐸  ∩  𝑄 )  →  ( ∀ 𝑠  ∈  ran  𝐿 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 )  ↔  ∀ 𝑠  ∈  ran  𝐿 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  ( 𝐸  ∩  𝑄 )  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  ( 𝐸  ∩  𝑄 ) ) ) ) | 
						
							| 70 | 69 | imbi2d | ⊢ ( 𝑐  =  ( 𝐸  ∩  𝑄 )  →  ( ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝐿 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 ) )  ↔  ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝐿 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  ( 𝐸  ∩  𝑄 )  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  ( 𝐸  ∩  𝑄 ) ) ) ) ) | 
						
							| 71 | 70 | albidv | ⊢ ( 𝑐  =  ( 𝐸  ∩  𝑄 )  →  ( ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝐿 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 ) )  ↔  ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝐿 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  ( 𝐸  ∩  𝑄 )  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  ( 𝐸  ∩  𝑄 ) ) ) ) ) | 
						
							| 72 | 71 | 2albidv | ⊢ ( 𝑐  =  ( 𝐸  ∩  𝑄 )  →  ( ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝐿 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 ) )  ↔  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝐿 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  ( 𝐸  ∩  𝑄 )  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  ( 𝐸  ∩  𝑄 ) ) ) ) ) | 
						
							| 73 | 64 72 | anbi12d | ⊢ ( 𝑐  =  ( 𝐸  ∩  𝑄 )  →  ( ( ( 𝐵  ∪  ran  𝐻 )  ⊆  𝑐  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝐿 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 ) ) )  ↔  ( ( 𝐵  ∪  ran  𝐻 )  ⊆  ( 𝐸  ∩  𝑄 )  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝐿 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  ( 𝐸  ∩  𝑄 )  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  ( 𝐸  ∩  𝑄 ) ) ) ) ) ) | 
						
							| 74 | 63 73 | elab | ⊢ ( ( 𝐸  ∩  𝑄 )  ∈  { 𝑐  ∣  ( ( 𝐵  ∪  ran  𝐻 )  ⊆  𝑐  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝐿 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 ) ) ) }  ↔  ( ( 𝐵  ∪  ran  𝐻 )  ⊆  ( 𝐸  ∩  𝑄 )  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝐿 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  ( 𝐸  ∩  𝑄 )  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  ( 𝐸  ∩  𝑄 ) ) ) ) ) | 
						
							| 75 | 26 61 74 | sylanbrc | ⊢ ( 𝜑  →  ( 𝐸  ∩  𝑄 )  ∈  { 𝑐  ∣  ( ( 𝐵  ∪  ran  𝐻 )  ⊆  𝑐  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝐿 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 ) ) ) } ) | 
						
							| 76 |  | intss1 | ⊢ ( ( 𝐸  ∩  𝑄 )  ∈  { 𝑐  ∣  ( ( 𝐵  ∪  ran  𝐻 )  ⊆  𝑐  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝐿 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 ) ) ) }  →  ∩  { 𝑐  ∣  ( ( 𝐵  ∪  ran  𝐻 )  ⊆  𝑐  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝐿 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 ) ) ) }  ⊆  ( 𝐸  ∩  𝑄 ) ) | 
						
							| 77 | 75 76 | syl | ⊢ ( 𝜑  →  ∩  { 𝑐  ∣  ( ( 𝐵  ∪  ran  𝐻 )  ⊆  𝑐  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝐿 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 ) ) ) }  ⊆  ( 𝐸  ∩  𝑄 ) ) | 
						
							| 78 | 77 28 | sstrdi | ⊢ ( 𝜑  →  ∩  { 𝑐  ∣  ( ( 𝐵  ∪  ran  𝐻 )  ⊆  𝑐  ∧  ∀ 𝑚 ∀ 𝑜 ∀ 𝑝 ( 〈 𝑚 ,  𝑜 ,  𝑝 〉  ∈  𝐴  →  ∀ 𝑠  ∈  ran  𝐿 ( ( ( 𝑠  “  ( 𝑜  ∪  ran  𝐻 ) )  ⊆  𝑐  ∧  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑚 𝑦  →  ( ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑥 ) ) )  ×  ( 𝑊 ‘ ( 𝑠 ‘ ( 𝐻 ‘ 𝑦 ) ) ) )  ⊆  𝐾 ) )  →  ( 𝑠 ‘ 𝑝 )  ∈  𝑐 ) ) ) }  ⊆  𝑄 ) | 
						
							| 79 | 15 78 | eqsstrd | ⊢ ( 𝜑  →  ( 𝐾 𝐶 𝐵 )  ⊆  𝑄 ) |