| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mclspps.d |
|
| 2 |
|
mclspps.e |
|
| 3 |
|
mclspps.c |
|
| 4 |
|
mclspps.1 |
|
| 5 |
|
mclspps.2 |
|
| 6 |
|
mclspps.3 |
|
| 7 |
|
mclspps.j |
|
| 8 |
|
mclspps.l |
|
| 9 |
|
mclspps.v |
|
| 10 |
|
mclspps.h |
|
| 11 |
|
mclspps.w |
|
| 12 |
|
mclspps.4 |
|
| 13 |
|
mclspps.5 |
|
| 14 |
|
mclspps.6 |
|
| 15 |
|
mclspps.7 |
|
| 16 |
|
mclspps.8 |
|
| 17 |
8 2
|
msubf |
|
| 18 |
13 17
|
syl |
|
| 19 |
18
|
ffnd |
|
| 20 |
|
eqid |
|
| 21 |
20 7
|
mppspst |
|
| 22 |
21 12
|
sselid |
|
| 23 |
1 2 20
|
elmpst |
|
| 24 |
22 23
|
sylib |
|
| 25 |
24
|
simp1d |
|
| 26 |
25
|
simpld |
|
| 27 |
24
|
simp2d |
|
| 28 |
27
|
simpld |
|
| 29 |
|
eqid |
|
| 30 |
14
|
ralrimiva |
|
| 31 |
18
|
ffund |
|
| 32 |
18
|
fdmd |
|
| 33 |
28 32
|
sseqtrrd |
|
| 34 |
|
funimass5 |
|
| 35 |
31 33 34
|
syl2anc |
|
| 36 |
30 35
|
mpbird |
|
| 37 |
9 2 10
|
mvhf |
|
| 38 |
4 37
|
syl |
|
| 39 |
38
|
ffvelcdmda |
|
| 40 |
|
elpreima |
|
| 41 |
19 40
|
syl |
|
| 42 |
41
|
adantr |
|
| 43 |
39 15 42
|
mpbir2and |
|
| 44 |
4
|
3ad2ant1 |
|
| 45 |
5
|
3ad2ant1 |
|
| 46 |
6
|
3ad2ant1 |
|
| 47 |
12
|
3ad2ant1 |
|
| 48 |
13
|
3ad2ant1 |
|
| 49 |
14
|
3ad2antl1 |
|
| 50 |
15
|
3ad2antl1 |
|
| 51 |
16
|
3ad2antl1 |
|
| 52 |
|
simp21 |
|
| 53 |
|
simp22 |
|
| 54 |
|
simp23 |
|
| 55 |
|
simp3 |
|
| 56 |
1 2 3 44 45 46 7 8 9 10 11 47 48 49 50 51 52 53 54 55
|
mclsppslem |
|
| 57 |
1 2 3 4 26 28 29 8 9 10 11 36 43 56
|
mclsind |
|
| 58 |
20 7 3
|
elmpps |
|
| 59 |
58
|
simprbi |
|
| 60 |
12 59
|
syl |
|
| 61 |
57 60
|
sseldd |
|
| 62 |
|
elpreima |
|
| 63 |
62
|
simplbda |
|
| 64 |
19 61 63
|
syl2anc |
|