| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mthmpps.r |
|
| 2 |
|
mthmpps.j |
|
| 3 |
|
mthmpps.u |
|
| 4 |
|
mthmpps.d |
|
| 5 |
|
mthmpps.v |
|
| 6 |
|
mthmpps.z |
|
| 7 |
|
mthmpps.m |
|
| 8 |
|
eqid |
|
| 9 |
3 8
|
mthmsta |
|
| 10 |
|
simpr |
|
| 11 |
9 10
|
sselid |
|
| 12 |
|
eqid |
|
| 13 |
4 12 8
|
elmpst |
|
| 14 |
11 13
|
sylib |
|
| 15 |
14
|
simp1d |
|
| 16 |
15
|
simpld |
|
| 17 |
|
difssd |
|
| 18 |
16 17
|
unssd |
|
| 19 |
7 18
|
eqsstrid |
|
| 20 |
15
|
simprd |
|
| 21 |
|
cnvdif |
|
| 22 |
|
cnvdif |
|
| 23 |
|
cnvxp |
|
| 24 |
|
cnvi |
|
| 25 |
23 24
|
difeq12i |
|
| 26 |
22 25
|
eqtri |
|
| 27 |
|
eqid |
|
| 28 |
27 4
|
mdvval |
|
| 29 |
28
|
cnveqi |
|
| 30 |
26 29 28
|
3eqtr4i |
|
| 31 |
|
cnvxp |
|
| 32 |
30 31
|
difeq12i |
|
| 33 |
21 32
|
eqtri |
|
| 34 |
33
|
a1i |
|
| 35 |
20 34
|
uneq12d |
|
| 36 |
7
|
cnveqi |
|
| 37 |
|
cnvun |
|
| 38 |
36 37
|
eqtri |
|
| 39 |
35 38 7
|
3eqtr4g |
|
| 40 |
19 39
|
jca |
|
| 41 |
14
|
simp2d |
|
| 42 |
14
|
simp3d |
|
| 43 |
4 12 8
|
elmpst |
|
| 44 |
40 41 42 43
|
syl3anbrc |
|
| 45 |
1 2 3
|
elmthm |
|
| 46 |
10 45
|
sylib |
|
| 47 |
|
eqid |
|
| 48 |
|
simpll |
|
| 49 |
19
|
adantr |
|
| 50 |
41
|
simpld |
|
| 51 |
50
|
adantr |
|
| 52 |
8 2
|
mppspst |
|
| 53 |
|
simprl |
|
| 54 |
52 53
|
sselid |
|
| 55 |
8
|
mpst123 |
|
| 56 |
54 55
|
syl |
|
| 57 |
56
|
fveq2d |
|
| 58 |
|
simprr |
|
| 59 |
57 58
|
eqtr3d |
|
| 60 |
56 54
|
eqeltrrd |
|
| 61 |
|
eqid |
|
| 62 |
5 8 1 61
|
msrval |
|
| 63 |
60 62
|
syl |
|
| 64 |
5 8 1 6
|
msrval |
|
| 65 |
11 64
|
syl |
|
| 66 |
65
|
adantr |
|
| 67 |
59 63 66
|
3eqtr3d |
|
| 68 |
|
fvex |
|
| 69 |
68
|
inex1 |
|
| 70 |
|
fvex |
|
| 71 |
|
fvex |
|
| 72 |
69 70 71
|
otth |
|
| 73 |
67 72
|
sylib |
|
| 74 |
73
|
simp1d |
|
| 75 |
73
|
simp2d |
|
| 76 |
73
|
simp3d |
|
| 77 |
76
|
sneqd |
|
| 78 |
75 77
|
uneq12d |
|
| 79 |
78
|
imaeq2d |
|
| 80 |
79
|
unieqd |
|
| 81 |
80 6
|
eqtr4di |
|
| 82 |
81
|
sqxpeqd |
|
| 83 |
82
|
ineq2d |
|
| 84 |
74 83
|
eqtr3d |
|
| 85 |
|
inss1 |
|
| 86 |
84 85
|
eqsstrrdi |
|
| 87 |
|
eqidd |
|
| 88 |
87 75 76
|
oteq123d |
|
| 89 |
56 88
|
eqtrd |
|
| 90 |
89 54
|
eqeltrrd |
|
| 91 |
4 12 8
|
elmpst |
|
| 92 |
91
|
simp1bi |
|
| 93 |
92
|
simpld |
|
| 94 |
90 93
|
syl |
|
| 95 |
94
|
ssdifd |
|
| 96 |
|
unss12 |
|
| 97 |
86 95 96
|
syl2anc |
|
| 98 |
|
inundif |
|
| 99 |
98
|
eqcomi |
|
| 100 |
97 99 7
|
3sstr4g |
|
| 101 |
|
ssidd |
|
| 102 |
4 12 47 48 49 51 100 101
|
ss2mcls |
|
| 103 |
89 53
|
eqeltrrd |
|
| 104 |
8 2 47
|
elmpps |
|
| 105 |
104
|
simprbi |
|
| 106 |
103 105
|
syl |
|
| 107 |
102 106
|
sseldd |
|
| 108 |
46 107
|
rexlimddv |
|
| 109 |
8 2 47
|
elmpps |
|
| 110 |
44 108 109
|
sylanbrc |
|
| 111 |
7
|
ineq1i |
|
| 112 |
|
indir |
|
| 113 |
|
disjdifr |
|
| 114 |
|
0ss |
|
| 115 |
113 114
|
eqsstri |
|
| 116 |
|
ssequn2 |
|
| 117 |
115 116
|
mpbi |
|
| 118 |
111 112 117
|
3eqtri |
|
| 119 |
118
|
a1i |
|
| 120 |
119
|
oteq1d |
|
| 121 |
5 8 1 6
|
msrval |
|
| 122 |
44 121
|
syl |
|
| 123 |
120 122 65
|
3eqtr4d |
|
| 124 |
110 123
|
jca |
|
| 125 |
124
|
ex |
|
| 126 |
1 2 3
|
mthmi |
|
| 127 |
125 126
|
impbid1 |
|